F30.1a Student demonstrates an understanding of financial decision making involving investing money, including analysis of compound interest and investment portfolios.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can determine the value of a missing variable in a simple/ compound interest problem.	I can answer questions based on compound interest questions (ie. find interest earned, rate of return, rank investments, compare investments, etc.) I can use the Rule of 72 I can graph an investment and analyze the graph I can calculate the value of a basic investment portfolio.	I can calculate the value of a complex investment portfolio. I can compare investment portfolios and make recommendations. I can demonstrate my understanding of what it means to be financially literate.

F30.1b Student demonstrates an understanding of financial decision making involving borrowing money

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can determine the	I can solve questions based on	I can demonstrate my
help with	value of a missing	financial problems involving	understanding of financial
becoming	variable in a financial	renting, leasing, buying or credit	decisions to be made involving
consistent with	problem involving	(ie. find total interest paid, total the criteria.	renting, leasing, buying or credit.
	cost of loan, time to pay off loan, basic cost and benefit analysis, etc.)	I can do cost and benefit analysis when a mortgage is involved.	

including analysis of renting, leasing, buying and credit.

F30.2 Student demonstrates an understanding of inductive and deductive reasoning.

Beginning (1)	Approaching (2)	Meeting (3)		Exemplary (4)
I need more help with becoming consistent with the criteria.	I can: - Identify the hypothesis, - Identify the conclusion - Write the converse - Find a counterexample - Write the inverse - Write the contrapositive	I can: - Write a conditional statement - Write a bi-conditional statement - Determine and verify if a statement is true - Determine if a conditional statement is bi-conditional - Solve a basic puzzle/game/problem		I can demonstrate my understanding of conditional statements. I can demonstrate my understanding of analysis of puzzles and games.
Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)	
I need more help with becoming consistent with the criteria	Given a Venn diagram, I can answer questions pertaining to the empty set, disjoint sets, subsets, universal sets, union, and intersection.	I can analyze the results of two data sets, including creating Venn diagrams as necessary. I can determine the complement of a set.	I can do an analysis of solutions for errors. I can analyze the results of three or more data sets including creating Venn diagrams as necessary. I can demonstrate my understanding of set theory.	

F30.3 Demonstrate understanding of set theory and its applications.
Beginning (1) \quad Approaching (2) \quad Meeting (3) \quad Exemplary (4)

I need more help with becoming consistent with the criteria	I can express odds as a probability and vice versa.	I can solve contextual problems that involve odds and probability.	I can demonstrate my understanding of odds and probability.

F30.4 Student extends understanding of odds and probability.

F30.5 Student extends understanding of the probability of two events, including events that are: mutually exclusive, non-mutually exclusive, and dependent.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can determine if two events are mutually exclusive or nonmutually exclusive. I can determine if two events are independent or dependent. I can solve basic problems that involve the probability of mutually exclusive events. I can solve basic problems that involve the probability of independent events.	I can represent mutually exclusive events and non-mutually exclusive events. I can solve problems that involve the probability of two events (exception probability of an event given occurrence of a previous event).	I can create problems that involve the probability of mutually exclusive events or nonmutually exclusive events. I can demonstrate my understanding of the probability of two events. I can solve problems that find the probability of an event given the occurrence of a previous event.

F30.6 Student demonstrates an understanding of combinatorics including, fundamental counting principle, permutations and combinations.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can evaluate	I can list all of the options to a	I can demonstrate my understanding
help with	factorials.	counting problem (I may use a	of counting problems.
becoming	I can solve basic	graphic organizer)	I can simplify factorial expressions
consistent with	permutation and	I can solve permutations with	and solve factorial equations.
the criteria.	combination	conditions, repetition, where	I can explain how factorials are
	problems when I	objects are not distinguishable	related to permutations and
	am told which type	I can solve combinations from	combinations.
	it is.	more than one set; with	I can solve situational questions
	I can solve basic	conditions;	involving probability and
	fundamental	I can solve situational questions	permutations.
	counting principle	involving the fundamental	I can compare and contrast
	problems.	counting principle.	permutations and combinations.

F30.7a Student represents data, using polynomial functions (of degree ≤ 3), to solve problems.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can match equations of polynomial functions to their corresponding graphs. I can graph and determine (with technology) the polynomial function that best approximates the data.	I can determine the characteristics of polynomial functions from their graphs or equations. I can identify the degree and sign of the leading coefficient for a polynomial function. I can interpolate and extrapolate data from polynomial situations.	I can demonstrate my understanding of polynomial functions. This may be done through interpreting graphs of polynomial functions to describe the situations that each function models and explain the reasoning or solve situational questions that involve data that is best represented by graphs of polynomial functions and explain the reasoning.

F30.7b Student represents data, using exponential and logarithmic functions, to solve problems.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can match equations of exponential and logarithmic functions to their corresponding graphs. I can graph and determine (with technology) the exponential or logarithmic function that best approximates the data.	I can determine the characteristics of exponential and logarithmic functions from their equations or graphs. I can interpolate and extrapolate data from exponential and logarithmic situations.	I can demonstrate my understanding of exponential and logarithmic functions. This may be done through interpreting graphs of exponential and logarithmic functions to describe the situations that each function models and explain the reasoning or solve situational questions that involve data that is best represented by graphs of exponential and logarithmic functions and explain the reasoning.

F30.7c Student represents data, using sinusoidal functions, to solve problems.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can match equations of sinusoidal functions to their corresponding graphs. I can graph and determine (with technology) the sinusoidal function that best approximates the data.	I can determine the characteristics of sinusoidal functions from their equations or graphs.	I can demonstrate my understanding of sinusoidal functions. This may be done through interpreting graphs of sinusoidal functions to describe the situations that each function models and explain the reasoning or solve situational questions that involve data that is best represented by graphs of sinusoidal functions and explain the reasoning.

F30.8 Student researches and gives a presentation on a current event or an area of interest that requires data collection and analysis.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I am able to show how math was involved in my event/area. I collected data that was relevant to my topic.	I am able to explain the connection to math in my event/area. If there were any bias or points of view then I could identify these. I was able to identify my data collection method.	I am able to explain the importance of the math involved in my event/area. I am able to interpret my data as to how it impacts society. I can identify any controversial issues and present multiple sides of the issues with supporting data, if applicable.

