P30.1 Student extends understanding of angle to angle in standard position, expressed in degrees and radians.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can sketch	I can sketch one radian in standard	I can describe
help with	angles in	position.	relationships between the
becoming	standard position		angle measurement
consistent with	in positive and	I can write an expression for all co-	systems.
the criteria.	negative degrees.	terminal angles given a specified	I can explain relationships
	I can convert	domain.	between radian measure
	degrees to	I can calculate co-terminal angles in a	and arc on circle of
	radians and vice	specific domain (in degrees and	radians.
	versa.	radians).	I can solve situational
			questions.

P30.2 Student demonstrates understanding of the unit circle and its relationship to the six

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can derive and apply equation	I can determine exact trig	I am able to explain
with becoming	$x^2 + y^2 = 1$ with coordinates on	ratios for measures that are	the relationship
consistent with	a terminal arm or unit circle.	multiples of 0° , 30° , 45° ,	between angles and
the criteria.	I can determine with	60°, 90° and radian	their points on the
	technology trig ratios of any	measures.	unit circle.
	angle in radians or degrees.	I can solve multiple step	
		trig equations.	

trigonometric ratios for any angle in standard position.

P30.3 Student demonstrates understanding of the graphs of the primary trigonometric functions.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can sketch the graph of	I can write equations for a	I can explain
help with	sin x, cos x, and tan x over	given trig graph.	transformational impact of
becoming	one positive and one	I can graph	coefficients a,b,c,d in terms of
consistent with	negative period.	$y = a \sin b (x-c) + d and$	amplitude, period, phase
the criteria.	I can determine the	$y=a \cos b (x-c) + d$	shift, domain, range and
	characteristics of a trig	I can determine and	zeroes.
	functions $y=\sin x$, $y=\cos x$	summarize the	I can explain the relationship
	and y= tan x. (amplitude,	characteristics of	between the sine function
	asymptotes, domain,	transformed graphs of sin	and the cosine function.
	range, period, x-	x, cos x, and tan x.	I can solve situational
	intercepts).		problems.

P30.4 Student demonstrates understanding of first and second degree trigonometric equations

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can verify whether a value	I am able to explain	I am able to analyze
with becoming	is a solution to a trig	relationships of solutions	and make an
consistent with	equation. I can apply	between trig equations and zero	equation given the
the criteria.	strategies algebraically to	of related trig functions (sine	roots and domain.
	determine exact solutions	and cosine).	
	for a trig equation (in	I can determine general	
	degrees and radians).	solutions for trig equations.	
		I can solve a multi- step	
		equation.	

P30.5 Student demonstrates understanding of trigonometric identities including: reciprocal identities quotient identities Pythagorean identities sum or difference identities (restricted to sine, cosine, and tangent) double-angle identities (restricted to sine, cosine, and tangent).

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can verify a trig statement for a given value.	I can prove more	I can determine
help with	I am able to prove "one-step" trig identities	complicated	non-permissible
becoming	algebraically.	identities.	values of trig
consistent with	I can determine the exact values of trig ratios		identities.
the criteria.	using sum, difference, and double angle		I am able to
	identities.		explain proof
			strategies.

P30.6 Student demonstrates an understanding of operations on, and compositions of, functions.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
Deginning (1)	Approaching (2)	Meeding (3)	Lacinplary (T)

Pre-Calculus 30 Math Rubrics

I need more	I can write equations	I can write a(n) equation/function as	I can explain strategies
help with	of a function that	a composition of two or more	for determining $f(f(x))$,
becoming	result from the sum,	functions.	f(g(x)) and $g(f(x))$.
consistent	difference, product,	I can sketch a function that is a sum	I can sketch a function
with the	or quotient of two or	or difference, of two given graphs.	that is a product,
criteria.	more functions.	I can determine the domain and	quotient or composites
		range for sums, differences, and	of two given graphs.
		composite functions.	

P30.7 Student extends understanding of transformations to include functions (given in equation or graph form) in general, including horizontal and vertical translations, and horizontal and vertical stretches.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can identify the parameters; a,	I can describe and graph	I can generalize
help with	b, h, & k, and describe their effect	combinations of	about the effects
becoming	on the graph of $y=f(x)$ given the	transformations, stretches, and	of the placement
consistent	equation $y=f(x)$.	reflections.	of different
with the	I can sketch functions with single	I can write the equation of	coefficients on the
criteria.	transformations, stretches, and	functions that has undergone	original graph of y
	reflections of $y = f(x)$ when	specified translations and or	= f(x).
	given the graph of $y=f(x)$.	stretches from a given function	
		in the form $y = a f(b(x-h))+k$.	

P30.8 Student demonstrates understanding of functions, relations, and inverses and their related equations resulting in reflections through the: x-axis, y-axis, line y=x

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can write equations of functions	I can develop and	I can explain strategies to
help with	with single transformations or	apply numeric,	determine if a relation and
becoming	reflections through the x- axis, y-	algebraic, graphic	its inverse are functions.
consistent	axis or $y = x$ line.	strategies to	I can determine what
with the	Given the equation of a function I	determine if two	restrictions must be placed
criteria.	can write the equation of its	relations are	on domain of a function for
	inverse.	inverses of each	its inverse to be a function.
		other.	

P30.9a Student demonstrates understanding of logarithms including relating logarithms to exponents and solving equations by graphing.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)		
I need more	I can express a logarithmic	I can sketch with or	I can explain how to estimate		
help with	expression as an exponential	without technology the	the value of logarithms using		
becoming	expression and vice versa.	graphs of logarithmic	benchmarks.		
consistent	I can determine without	functions in the form of	I can explain the role of the		
with the	technology the exact value of	$y = \log_b x, b > 1.$	vertical asymptote for		
criteria.	a logarithm.		logarithm functions.		
	Given the graph of $y =$	I am able to apply	I can explain strategies for		
	$\log_b x$, $b > 1$	strategies for sketching	sketching transformations of		
	I am able to identify the	transformations of the	the graph $y = \log_b x$, $b > 1$		
	domain, range, vertical	graph $y = \log_b x$, $b > 1$	with multiple types of		
	asymptote, and intercepts.	with types of	transformations.		
	I am able to identify the	transformations.	I am able to demonstrate		
	transformations of the graph		graphically that $y =$		
	from the equation.		$\log_b x$, $b > 1$ and $y=b^x$ are		
			inverses of each other.		

P30.9b Student demonstrates understanding of logarithms including evaluating logarithms deriving laws of logarithms solving equations graphing.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can apply the laws	I can apply the laws of	I can solve situational questions
help with	of logarithms to	logarithms to determine	that involve exponential growth
becoming	determine	equivalent expressions for	or decay, such as loans,
consistent	equivalent	given logarithmic statements	mortgages, and investments.
with the	expressions for	involving multi-steps.	I can solve situational questions
criteria.	given logarithmic	I can apply strategies for	involving logarithmic scales, such
	statements involving	solving multi- step	as the Richter scale and pH
	one step.	logarithmic equations	scale.I can explain why a value
	I can apply strategies	including quadratic and	obtained in solving a logarithmic
	for solving single	extraneous roots.	equation may be extraneous.

Pre-Calculus 30 Math Rubrics

ste	ep logarithmic	I am able to demonstrate	I can explain strategies for
eq	quations.	process, but may contain	solving logarithmic equations.
		simplification errors.	

P30.9c Student demonstrates understanding of exponential functions.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)	
I need more	I can solve exponential equations in	I am able to sketch the	I can explain the role of	
help with	which the bases are/are not	graphs of exponential	horizontal asymptotes	
becoming	powers of one another.	functions with or	for exponential	
consistent with	Given the graph $y = a^x$, I can	without technology.	functions.	
the criteria.	identify the domain, range,			
	horizontal asymptote and	I can apply strategies	I can explain strategies	
	intercepts.	for sketching	for sketching	
	I can identify whether an	transformations of the	transformations of the	
	exponential function represents	graph $y = a^x$ with	graph $y = a^x$ with	
	growth or decay.	types of	multiple types of	
	I can identify the transformations	transformations.	transformations	
	of the graph $y = a^x$			

P30.10a Student demonstrates understanding of polynomials of degree greater than 2 (limited to polynomials of degree ≤ 5 with integral coefficients).

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can divide a polynomial by x-a using	I am able to	I am able to fully
help with	either long division or synthetic division.	demonstrate the	factor polynomials
becoming	I can use the remainder theorem to	process of	of degree 2 or
consistent with	determine the remainder.	factoring	higher.
the criteria.	I am able to use the factor theorem to	polynomials of	
	determine if x -a is a factor of $P(x)$.	degree 2 and	I am able to solve
	I can identify the degree, leading	higher using the	problems.
	coefficient, and constant of each	factor theorem.	
	polynomial function.		

P30.10b Student demonstrates understanding of polynomial functions of degree greater than 2 (limited to polynomials of degree \leq 5 with integral coefficients).

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can identify polynomial functions and their	I analyze	I solve
help with	characteristics.	equations to	problems.
becoming	I can match a polynomial function with its graph	sketch	
consistent	based on degree, end behavior, and number of x	polynomial	I explain
with the	intercepts.	functions.	relationships
criteria.	Given a graph, I am able to determine the least		between
	possible degree, sign of leading coefficient, x-		zeroes and
	intercepts, intervals where a function is positive and		roots.
	negative.		
	I analyze factored equations to sketch polynomial		
	functions.		

P30.11a Student demonstrates understanding of radical functions with restrictions on the domain.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I demonstrate the	I use transformations to graph $-k =$	I can determine a
help with	process of:	$a\sqrt{b(x-h)}$.	radical function
becoming	 sketch the 	I can explain the role of a, b, h, and k given	from its graph.
consistent with	graph of $y =$	an equation.	
the criteria.	$\sqrt{(x)}$ using a	I sketch the graph of $y = \sqrt{f(x)}$ given the	I explain level 2 and
	table of values	graph of $y = f(x)$.	3 concepts.
	identify the	I can compare the domains and ranges of	1 12 1
	role of a, b, h, k	$y = \sqrt{f(x)}$ and $y = f(x)$.	I express level 2 and
	given an	I graphically solve radical equations with	3 answers in
	equation	technology.	simplest form.

P30.11b Student demonstrates understanding of rational functions with restrictions on the domain.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)

Pre-Calculus 30 Math Rubrics

I need more	I can determine the	I can determine the	I can explain concepts related
help with	characteristics of the	equation of oblique	to graphing rational functions.
becoming	graphs of rational	asymptotes.	
consistent with	functions including		I can create a rational function,
the criteria.	vertical asymptotes,	I can graph rational	given a set of characteristics.
	points of discontinuity	functions.	
	(holes), horizontal		
	asymptotes.		

P30.12 Student demonstrates understanding of permutations, including the fundamental counting principle.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	When specified, I can	When specified, I can	I can solve equations
help with	demonstrate the process	demonstrate the process to	involving permutations
becoming	to:	solve:	and combinations.
consistent with	Solve basic	 Permutations with repetitions 	
the criteria.	permutations		I explain concepts
	Apply the fundamental	I can determine whether a	relating to
	counting principle	question is a permutation or a	permutations and
	Solve basic	combination.	combinations.
	combinations		

P30.13 Student demonstrates understanding of combinations of elements, including the application to the binomial theorem.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can complete a missing row of	I can apply the	I can apply the binomial
help with	Pascal's triangle.	binomial theorem	theorem to expansions of
becoming	I can determine missing	to expansions of	(ax+by).
consistent with	numbers in expansions involving	(x+y).	I relate the binomial theorem
the criteria.	the binomial theorem.		to Pascal's triangle.