P20.1a Student demonstrates understanding of the absolute value of real numbers.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can determine the absolute value of a	I can simplify	I can explain with the
with becoming	real number. I can order a set of real	expressions involving	use of examples how
consistent with	numbers. I can simplify expressions	absolute value with	absolute value fits into
the criteria.	involving absolute value with one or two	more than 2 steps.	the order of
	steps.	_	operations.

P20.1b Student demonstrates understanding of the absolute value of equations and functions involving

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can create a table of values for	I can describe the relationship between	I can identify and
help with	an absolute value function.	the graph of $y=f(x)$ and its absolute	correct errors in a
becoming	I can sketch the graph of $y =$	value.	solution.
consistent with	f(x) given the graph of $f(x)$.	I can determine the intercepts, domain,	I can solve
the criteria.	I can determine the intercepts,	and range, given its equation.	situational
	domain, and range, given a	I can algebraically determine the	questions.
	graph.	solution set of a complex equation	I am able to
	I can algebraically determine	involving absolute values including	explain level 2 &
	the solution set of an equation	those with extraneous roots.	3 questions.
	involving absolute values.	My solutions may involve simplifying	
		errors.	

the absolute value of linear and quadratic functions by graphing and analyzing.

P20.2a Student expands and demonstrates understanding of radicals with numerical and variable radicands including computations.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can express entire radicals as mixed	I can solve more complicated	I can explain level 2
with becoming	radicals and vice versa.	radical expressions.	and 3 questions.
consistent with	I can order a set of real numbers	I can rationalize cube root and	I can solve
the criteria.	which includes radical expressions.	binomial denominators.	situational
	I can simplify basic radical	I can determine the values of a	questions.
	expressions.	variable for which a given	I express all
	I can rationalize a square root	radical expression is defined.	answers in simplest
	monomial denominator.		terms.

P20.2b Student expands and demonstrates understanding of radicals with numerical and variable

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can determine and verify	I can determine and verify	I can solve situational
help with	solutions of basic radical	solutions of radical	questions.
becoming	equations that can be simplified	equations containing unlike	I can identify extraneous
consistent with	to a single radical and constant	radicals or quadratic	solutions.
the criteria	term.	results.	

radicands including solving equations (limited to square roots and one or two radicals).

P20.3a Student expands and demonstrates understanding of rational expressions and equations (up to and including degree 2 numerators and denominators) including equivalent forms of expressions.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I need more help	I can determine equivalent rational	I can factor and	I can explain level
with becoming	expressions.	simplify rational	2 and 3 questions.
consistent with	I can verify whether or not a value is	expressions but may	
the criteria.	permissible or not.		

I can determine non-permissible values.	make simplifying	I express all
I can simplify basic rational expressions in	errors.	answers in
factored form.		simplest form.

P20.3b Student expands and demonstrates understanding of rational expressions and equations (up to and including degree 2 numerators and denominators) including operations on expressions.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can multiply and divide	I can add and subtract	I can explain level 2 and 3
with becoming	rational expressions with	rational expressions	questions and list all non-
consistent with	some small calculation	without common	permissible values.
the criteria.	errors.	denominators.	I can solve situational questions
	I can add and subtract	I can simplify rational	when not given the expression.
	rational expressions with	expressions that involve 2	I express all answers in simplest
	common denominators.	or more operations.	form.

P20.3c Student expand and demonstrate understanding of rational expressions and equations (up to and including degree 2 numerators and denominators) including solving equations that can be simplified to linear or quadratic equations.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can solve equations	I can solve equations involving rational	I can solve situational
help with	involving rational	expressions involving factoring.	questions when not
becoming	expressions in factored	I can verify why a value may not be a	given the equation.
consistent with	form.	solution.	
the criteria.			

P20.4 Student expands and demonstrates understanding of the primary trigonometric ratios including the use of reference angles ($0^{\circ} \le \theta \le 360^{\circ}$) and the determination of exact values for trigonometric ratios.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can demonstrate understanding of:	I can determine exact	I solve contextual
help with	- standard position of an angle and	trig values given an	problems, using trig
becoming	quadrants	angle with the use of	ratios.
consistent	- (+/-) signs of trig ratios and the CAST rule	special triangles.	I identify angles for
with the	- location of angles on the coordinate plane	I can solve basic trig	which the tangent
criteria.	I can determine and apply reference angles.	equations such as sin B	ratio does not exist
	I can determine exact trig values given a	= a.	and explain why.
	point on the terminal arm.		

P20.5 Student demonstrates understanding of the cosine law and sine law, including the ambiguous case.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can solve for a	I can solve situational	I can explain the steps in a proof of the sine
help with	missing side or	questions involving non-	law and cosine law.
becoming	angle (excluding	right triangles (excluding	I can illustrate and explain the possibilities
consistent with	ambiguous case)	the ambiguous case).	for a given set of measurements for the
the criteria.	when the diagram is	I can determine the	ambiguous case.
	given (including	missing side or angle in a	I can perform error analysis.
	those in situational	given triangle involving	I can solve situational problems that involve
	questions).	the ambiguous case.	the ambiguous case.

P20.6 Student expands and demonstrates understanding of factoring polynomial expressions including those of the form:

 ${}_{\circ}a^{2}x^{2}$ - ${}_{b}b^{2}y^{2}$, $a \neq 0$, $b \neq 0$; $a(f(x))^{2}$ - b(f(x)) + c, $a \neq 0$; $a^{2}(f(x))^{2}$ - $b^{2}(g(y))^{2}$, $a \neq 0$, $b \neq 0$ where a, b, and c are rational numbers.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)

I need more help	I can demonstrate the	I can factor multi-step	I can fully factor
with becoming	process of factoring	expressions.	composite functions and
consistent with the	single-step expressions.	I can demonstrate the process of	write all answers in
criteria.		factoring composite functions.	simplified form.

P20.7a Student demonstrates understanding of quadratic functions of the form $y = a(x - p)^2 + q$ and of their graphs, including:

- ∘vertex
- odomain and range
- odirection of opening
- oaxis of symmetry
- •x- and y-intercepts.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can find the coordinates	I can find the domain and range, axis of	I can explain
with becoming	of the vertex, describe	symmetry and the number of x intercepts.	and do level 2
consistent with	the width, and direction	I can write a quadratic function that	and 3
the criteria.	of opening.	represents a given graph or set of	questions.
		characteristics.	

P20.7b Student demonstrates understanding of quadratic functions of the form $y=ax^2+bx+c$ and of their graphs, including:

- ∘vertex
- odomain and range
- direction of opening
- oaxis of symmetry
- ox- and y-intercepts.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can find 5/7 of	I can sketch the graph of a	I can explain level 2 and 3
with becoming	the following:	quadratic function in the form of	questions.
consistent with	vertex, domain and	$y=ax^2+bx+c$.	I can evaluate a quadratic
the criteria.	range, axis of	I can find the following: vertex,	function that models a given
	symmetry, y-	domain and range, axis of	situation and explain any
	intercepts, number	symmetry, y-intercepts, number of	assumptions.
	of x- intercepts and	x intercepts and direction of	I can identify and correct errors
	direction of	opening.	in a given example of
	opening.	I can change an equation from	completing the square.
		standard to vertex form.	

P20.8a Student demonstrates understanding of quadratic equations including the solution of systems of linear-quadratic and quadratic-quadratic equations in two variables.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can determine the number of	I can solve	I can solve situational
with becoming	solutions to a system given the graph.	quadratic-	questions involving systems of
consistent with	I can solve linear quadratic systems	quadratic	equations.
the criteria.	algebraically.	systems	I can illustrate how a system
	I can state the solution to a system of	algebraically.	may have zero, one, two or an
	equations given the graph.		infinite number of solutions.

P20.8b Student demonstrates understanding of quadratic equations including the solution of single variable equations.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)

I need more	I can solve	I can solve quadratic equations	I can articulate the advantages /
help with	factorable quadratic	which are not factorable using	disadvantages of different strategies
becoming	equations using any	multiple methods, including	for solving quadratic equations.
consistent with	method.	factoring, completing the square	I can identify and correct any errors
the criteria.	I can solve	and the quadratic formula.	within a solution.
	quadratic equations	I can use the discriminant to	I can factor using completing the
	given a graph.	determine the number of real	square.
		roots for a quadratic equation.	I express all answers in simplest
			form.

P20.9a Student expands and demonstrates understanding of inequalities including two-variable linear and quadratic inequalities.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can use test points to determine the solution	I can determine the	I can explain level
with becoming	region.	solution region for	2 and 3 questions.
consistent with the	I can correctly use a solid or broken line when	two variable	
criteria.	graphing a solution.	quadratic	
	I can determine the solution region for two	inequalities.	
	variable linear inequalities.		

P20.9b Student demonstrates understanding of quadratic equations including the solution of single variable equations.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can apply a strategy such as case analysis,	I can solve	I can explain level 2
with becoming	graphing, roots and test points, or sign	situational	and 3 questions.
consistent with	analysis to solve one variable inequalities.	questions	I use proper notation
the criteria.	I may not use proper notation to identify the	involving a one	to identify the interval.
	correct interval.	variable inequality.	

P20.10a Student demonstrates understanding of arithmetic sequences and series.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can generate an arithmetic	I can determine a, n, d, or t_n	I can solve
with becoming	sequence.	in multi-step problems.	situational
consistent with	I can identify arithmetic series.	I can solve questions with	questions.
the criteria.	I can find a, n, d, or t_n involving single	variable answers.	I can answer
	steps.		theoretical
			questions.

P20.10b Student demonstrates understanding of geometric (finite and infinite) sequences and series.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can generate a geometric	I can do multi-step	I can determine a, n, r, or t_n in
with becoming	sequence.	substitutions.	situational questions.
consistent with	I can identify geometric sequences.	I can do basic	I can answer theoretical
the criteria.	I can find a, n, r, or t_n involving	word problems.	questions.
	single steps.		

P20.11 Student demonstrates understanding of reciprocal functions of:

olinear functions

•quadratic functions.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can determine the non-permissible values.	I can sketch the	I can explain
with becoming	I can find the equation of the reciprocal given	graph of a reciprocal	level 2 and 3
	y=f(x) and vice versa.		questions.

consistent with	I can graph the reciprocal given the graph of	function given the	
the criteria.	y=f(x).	equation $y=f(x)$.	