FP20.1 Student demonstrates an understanding of the mathematics involved in a historical event or an area of interest.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
$\begin{array}{l}\text { I need more help } \\ \text { with becoming } \\ \text { consistent with } \\ \text { the criteria. }\end{array}$	$\begin{array}{l}\text { I am able to show } \\ \text { how math was } \\ \text { involved in my } \\ \text { event/area. }\end{array}$	$\begin{array}{l}\text { I am able to explain the } \\ \text { connection to math in } \\ \text { I collected } \\ \text { data/stated facts that } \\ \text { were relevant to my } \\ \text { topic. }\end{array}$	$\begin{array}{l}\text { I am able to explain the importance of } \\ \text { bias or points of view. } \\ \text { the math involved in my event/area. } \\ \text { I was able to identify my } \\ \text { data collection method } \\ \text { or where I found my } \\ \text { facts. }\end{array}$

to how it impacts society. \\
I can identify any controversial issues \\
and present multiple sides of the issues \\
with supporting data, if applicable.\end{array}\right]\).

FP20.2 Student demonstrates an understanding of inductive and deductive reasoning including: analyzing

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
$\begin{array}{l}\text { I need more help } \\ \text { with becoming } \\ \text { consistent with } \\ \text { the criteria. }\end{array}$	$\begin{array}{l}\text { I can make a } \\ \text { conjecture by } \\ \text { observing } \\ \text { patterns and } \\ \text { identifying } \\ \text { properties. } \\ \text { I can provide } \\ \text { counterexamples } \\ \text { to a conjecture } \\ \text { with false } \\ \text { conclusions. }\end{array}$	$\begin{array}{l}\text { I can analyze an } \\ \text { argument for its } \\ \text { validity. }\end{array}$	$\begin{array}{l}\text { I can prove algebraic } \\ \text { number relationships. } \\ \text { I can prove } \\ \text { conjectures. } \\ \text { I can determine } \\ \text { strategies for solving } \\ \text { puzzles or winning } \\ \text { games and explain } \\ \text { these strategies. }\end{array}$

and/or deductive reasoning. \\
I can identify errors in proofs. \\
I can solve situational questions. \\
I can compare inductive and deductive \\
reasoning. \\
I can create a variation of a puzzle or game \\
and describe a strategy for solving the puzzle \\
or winning the game.\end{array}\right]\)
conjectures, analyzing spatial puzzles and games, providing conjectures, solving problems.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
$\begin{array}{ll}\text { I need more help } \\ \text { with becoming } \\ \text { consistent with } \\ \text { the criteria }\end{array}$	$\begin{array}{l}\text { I can determine } \\ \text { and compare unit } \\ \text { rates. }\end{array}$	$\begin{array}{l}\text { I can solve rate problems. } \\ \text { I can determine rates from graphs } \\ \text { and tables. }\end{array}$	$\begin{array}{l}\text { I can justify my work. } \\ \text { I can create non symbolic } \\ \text { representations for rates. }\end{array}$
I can relate slope of a graph to rate.			

I can describe situations where a rate \\
might occur. \\

effect of factors within a situation\end{array}\right]\)| I can analyze situations in which unit |
| :--- |
| rates are determined and give |
| reasons if the rate should be used or |
| not. |\quad| I can solve situational questions. |
| :--- |

FP20.3a Student demonstrates an understanding of proportional reasoning related to rates.

FP20.3b Student demonstrates an understanding of proportional reasoning related to scale diagrams.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I can determine 3 of 5 of the	I can determine scale factor of	I can solve situational
with becoming	following: scale factor of 2D	2D drawings, determine scale	
consistent with the			
drawings, scale factor of 3D			
criteria	factor of 3D objects, objects, determine unknown dimensions of 2D drawings, determine diagrams of 2D determine unknown	dimensions of 2D drawings, shapes and 3D	objects.

	dimensions of 3D objects, draw a scale diagram of a 2D shape.	dimensions of 3D objects, draw a scale diagram of a 2D shape.	

FP20.3c Student demonstrates an understanding of proportional reasoning related to area, surface area and volume.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can find the ratio of areas, surface area or volume, given the scale factor of a 2D shape or 3D object,	I can determine the scale factor and apply this to solve for a value, given the ratio of areas, surface area or volume of an object.	I can solve situational questions. I can explain the effect of a change in scale factor on the area of a 2D shape or the surface area or volume of a 3D object.

FP20.4a Student demonstrates an understanding of the properties of angles and triangles including: deriving proofs based on theorems and postulates about congruent triangles and solving problems.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can find missing	I can find missing angle	I can find missing angle measures when the
help with	angle measures in	measures in any type of	
given angles are a polynomial expression. I			
becoming	BASIC diagrams	diagram of parallel lines	
consistent with	of parallel lines construct parallel lines. I can perform		
the criteria.	cut by a transversal, cut by a transversal,	error analysis.. I can explain why certain trangles, and polygons. I angles are equal in parallel lines. I can derive can derive basic proofs. I proofs. I can verify if angles formed by non- triangles, and polygons.	proof.

FP20.5 Student demonstrates an understanding of the cosine law and sine law (including the ambiguous case).

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can solve for a	I can solve situational	I can explain the steps in a proof of the
help with	missing side or angle	questions involving non right sine law and cosine law.	
becoming	(excluding	triangles (excluding the	I can illustrate and explain the
consistent	ambiguous case)	ambiguous case). with the criteria.	when the diagram is given (including those in situational I can illustrate and explain the for a given set of measurements for the ambiguous
	possibilities for a given set of measurements for the case.	I can perform error analysis. ambiguous case.	I can solve situational problems that involve the ambiguous case.

FP20.6 Student demonstrates an understanding of normal distribution, standard deviation and z-scores.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can consistently	I can consistently determine the area	I can explain the
help with	determine at least 3		
becoming	under the curve.	application, meaning and	
consistent with following:	mean, median, mode,	I can consistently sketch a normal	
distribution and analyze data to			
the criteria.	standard deviation, and z-score.	determine if it approximates normal standard distribution.	deviation, properties of a normal curve, and z-score.
		I can compare normally distributed data sets and explain what it tells me.	I can solve situational
questions.			
		I can determine z-scores to fit a situation.	

FP20.7 Student demonstrates an understanding of the interpretation of statistical data.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I am able to identify the confidence level, confidence interval, and margin of error.	I am able to determine the range of the data in a poll/survey. I can explain how the size of the random sample used impacts the data. Using confidence intervals I can make inferences and decisions about a population from sample data.	I am able to critique real life examples in which statistical data is used to support a particular position. I can support a position by analyzing statistical data, as well as consider other factors.

FP20.8a Student demonstrates an understanding of systems of linear inequalities.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can graph the solution of one linear inequality. I can determine the solution of a linear inequality. I can determine if a point is in the solution of a linear inequality. I can match a graph with its linear inequality.	I can write a system of linear inequalities for a given graph. I can graph the solution of a system of linear inequalities. I can determine if a point is in the solution of a system of linear inequalities. I can determine if the boundaries and their points of intersection are part of the solution region. I can match situations with the graphs of a set of linear inequalities.	I can solve situational questions. I can verify my solution. I can justify my choice of solid or broken lines.

FP20.8b Student demonstrates an understanding of optimization problems.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	Given an optimization	Given the restrictions,	I can solve an optimization
with becoming			
consistent with the			
croblem with the			
constraints, objective	constraints, and objective function, I am able to function and graph, I am able to find the vertices and max/min values of the objective function.	graph and find the coordinates of the vertices and determine possible solutions to the question.	I can justify and explain feasible regions, coordinates of vertices and other parts of optimization problems.

FP20.9 Student demonstrates an understanding of the characteristics of quadratic functions of the form y $=\mathrm{a}(\mathrm{x}-\mathrm{p})^{2}+\mathrm{q}$, including: vertex, intercepts, domain, range, and axis of symmetry.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can determine - a, p and q - the coordinate of the vertex - the equation of the axis of symmetry - max/min value, - opens up/down	I can: - write the equation of the function given the graph - identify the roots/zeros/xintercepts - determine y-intercept	I can: - explain the relationship between the roots, zeros and x-intercepts - explain what domain and range means in a situation - explain the number of possible xintercepts a quadratic function has

Foundations 20 Math Rubrics

| \bullet domain and range | \bullet sketch the graph of a
 quadratic function
 - determine the axis of
 symmetry given the $x-$
 intercepts | \bullet explain the effects on the graph
 when a, p and q are changed
 \bullet solve situational questions |
| :--- | :--- | :--- | :--- |

