Foundations & Pre-calculus 10 Math Rubrics

FP10.1 Student demonstrates an understanding of factors of whole numbers by determining the: prime factors, greatest common factor, least common multiple, principal square root, cube root.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help with becoming consistent with the criteria.	I can consistently determine the prime factors of a whole number, GCF and LCM of whole numbers	I can find the principal square root and cube root of whole numbers using the factors of the number. I am able to explain the strategy I use for finding prime factors, GCF or LCM, square root and cube roots.	I can report about the numbers 0 and 1 with respect to factors and multiples. I can perform error analysis. I am able to solve situational problems involving GCF, LCM, square roots and cube roots.

FP10.2a Student demonstrates an understanding of irrational numbers by determining if a number is an irrational number, ordering rational numbers, and knowing where they may be used.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I am consistently able	I am able to change all radical numbers	I am able to answers
help with	to change an entire	from entire to mixed form. I am	questions involving
becoming	radical to a mixed	consistently able to order real numbers	irrational numbers and
consistent with	radical and a mixed	including rational and irrational.	explain why they are used
the criteria.	radical to an entire	I am able to consistently determine and	in the question.
	radical for simple	justify if a number is irrational in	I am able to perform error
	numbers.	radical form.	analysis.

FP10.2b Student demonstrates an understanding of irrational numbers in exponent form.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I am consistently able to	I am consistently able to	I am able to perform error
help with	evaluate and simplify	demonstrate the process	analysis.
becoming	expressions using all exponent	of simplifying expressions	I am able to determine which
consistent with	laws including a negative or	by applying the exponent	value is larger/smaller in a set
the criteria.	rational exponent (numerical	laws (numerical and	of numbers.
	and variable bases) where	variable bases) involving	I am able to answer situational
	there is one step. I am able to	more than one step,	questions.
	change from exponent form to	including negative and/or	I am able to explain my
	radical form and vice versa.	rational exponents.	strategies.

FP10.3a Student demonstrates an understanding of SI and imperial units of measurements including linear measurement and relationships between and within measurement systems.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can use referents to	I can consistently convert	I can solve situational questions
help with	estimate linear lengths.	between systems of	involving measurements and
becoming	I can convert when	measurements.	conversions.
consistent with	there is a single step	I can consistently measure	I understand the difference
the criteria.	involved in the	linear lengths using	between comparable measures
	conversion.	appropriate measurement	between systems (ie. Yards to
		tools.	metres)
			I can verify my conversions.

FP10.3b Student demonstrates an understanding of SI and imperial units of measurements including surface area and volume.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can consistently	I can consistently find	I can accurately determine an unknown
help with	find the surface area	the surface area and	measurement given the surface
becoming	and volume when	volume of right	area/volume and some measurements. I
consistent with	the necessary	pyramids, right cones,	can solve situational questions involving
the criteria.			

Foundations & Pre-calculus 10 Math Rubrics

dimensions are	right prisms, cylinders	surface area/volume. I can find the
given.	and spheres.	surface area/volume of composite objects.

FP10.4 Student demonstrates an understanding of how to develop and apply the primary trigonometric ratios (sine, cosine, tangent) to solve problems that involve right triangles.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I can identify the hypotenuse, the	I am able to solve for	I am able to consistently solve
help with	adjacent and opposite sides to an	a missing value by	right triangles.
becoming	angle in that right triangle.	applying the trig	I am able to explain and analyze
consistent with	I can solve for an unknown given	ratios.	problems involving right
the criteria.	which trig ratio to use.		triangles.

FP10.5a Student demonstrates an understanding of the multiplication of monomials, binomials, and trinomials concretely, pictorially and symbolically.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I am consistent with	I am consistent	I am able to multiply all types of
help with	multiplying monomials by	with multiplying	polynomials accurately.
becoming	polynomials.	binomials by	I am able to perform error analysis on
consistent	I am consistent with the	binomials and	multiplication of polynomials.
with the	process of how to multiply	express answers	I am able to show multiplication
criteria.	binomials by binomials, but I	in simplest form.	pictorially, concretely and symbolically.
	make consistent mistakes,		
	maybe with signs.		

FP10.5b Student demonstrates an understanding of factoring concretely, pictorially and symbolically.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I am consistent	I am consistent	I can factor polynomials of all types
help with	with factoring when told	with factoring single step	including multivariable and multi -
becoming	which type of polynomial	polynomials when the	step. I am able to perform error
consistent with	factoring.	type is not given.	analysis.
the criteria.	_		_

FP10.6 Student demonstrates an understanding of relations and functions.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I am able to consistently	I can consistently determine	I am able to analyze graphs of
with becoming	determine if a relation	the domain and range of any	relations to determine the
consistent with	is a function.	graph.	situation that it could represent.
the criteria.	I can determine the	I can determine and explain	I can draw a graph given a
	domain and range of	any restrictions on the	situation.
	relations with discrete	domain and range of a	I am able to explain the
	data (points).	relation.	difference between relations and
			functions.

FP10.7 Student demonstrates an understanding of linear relations by determining rate of change/slope.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I am consistently able to determine	I am consistently able to	I am able to justify why
help with	the slope of a graph (rise/run), and	determine if lines are	lines are parallel,
becoming	from a given equation.	parallel, perpendicular or	perpendicular or
consistent with	I am consistently able to classify lines	neither given the equation.	neither.
the criteria.	as having positive or negative slopes.	I am able to determine the	I am able to explain
	I am consistently able to determine	slope given two points.	what the rate of
	the slope of parallel lines and/or	I am able to draw the graph	change/slope
	perpendicular lines given the slope of	of a relation given the slope.	represents in the
	one of the lines.		context of the question.

FP10.8a Student demonstrates an understanding of linear relations by representing in words, ordered pairs, tables of values, graphs, function notation, equations, and determining characteristics.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I am able to consistently	I am able solve	I can explain why a function is a linear
with becoming	determine if a relation	equations written	function.
consistent with	is linear.	in function	I am able to explain the relationship between
the criteria.	I can consistently state	notation.	a linear function written in function notation
	the x-intercept and y	I can determine x	and as an equation in two variables.
	intercept of a linear	and y intercepts	I am able to demonstrate an understanding of
	relation.	given an equation.	function notation.

FP10.8b Student demonstrates an understanding of linear relations through graphing a linear relation.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I am consistently able	I am consistently	I am able to perform error analysis.
with becoming	to graph a linear	able to graph a	I can explain my graphing strategy.
consistent with the	relation given a table of	linear relation given	I am able to graph a linear relation with
criteria.	values/ordered pairs.	the equation.	multiple strategies.

FP10.9 Student demonstrates an understanding of linear relations through writing the equation of the relation.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more	I am consistently	I can consistently write	I am able to write an equation when dealing
help with	able to write the	linear equations in slope-	with parallel or perpendicular lines.
becoming	equation of a line	intercept form, slope-	I am able to write an equation from a given
consistent with	when no	point form, and general	situation.
the criteria.	manipulation is	form given any acceptable	I am able to describe my strategies of
	required.	pieces of information	writing equations.
		(excluding parallel or	I can verify my equations using points on
		perpendicular lines).	the line.

FP10.10 Student demonstrates an understanding of systems of linear equations.

Beginning (1)	Approaching (2)	Meeting (3)	Exemplary (4)
I need more help	I am able to determine the	I am able to solve a	I am able to solve a system of linear
with becoming	solution to a system of linear	system of linear	equations to find the exact solution
consistent with	equations when the graphs	equations to find	when fraction or decimal coefficients
the criteria.	of the systems are given. I	the <u>exact</u> solution	are involved.
	can explain the meaning of	when there is no	
	this solution.	fraction or decimal	I am able to solve problems involving
	I am able to determine if a	coefficients.	systems of linear equations.
	point is a solution to the	I can determine the	I am able to analyze a system of linear
	system.	number of solutions	equations to determine how many
	I am able to solve a basic	to a linear system if	solutions it will have.
	system of linear equations	the equations are	I am able to solve a system multiple
	algebraically (basic means	already in slope-	ways and discuss the solutions found.
	coefficients are already the	intercept form.	
	same or a variable is		
	isolated)		