Student-Directed Study

PH30-SDS1 Create and carry out a plan to explore one or more topics of personal interest relevant to Physics 30 in depth.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can identify a personally relevant or	I can assemble a	I can demonstrate	I can use my deep
interesting topic and develop a	product demonstrating	a deep	understanding to show
proposal for a scientific investigation,	an understanding of a	understanding of	how my topic impacts
or a plan for an experiment, using the	Physics 30 related topic	my topic.	myself, society, and/or
scientific method.	of interest.		the scientific community.

Modern Physics

PH30-MP1 Analyze the importance of relativistic principles and quantum mechanics in our world.

Beginning (1)	Approaching (2)	\Rightarrow Proficiency (3)	Mastery (4)
I can identify differences	I can explain phenomenon	I can explain phenomenon	I can explain and
between Newtonian	related to quantum	related to special relativity	discuss the ongoing
mechanics, Quantum	mechanics including the	including relativistic space	debates in physics
mechanics, and special	quantum nature of light,	and time (i.e. twin paradox	relative to quantum
relativity.	photoelectric effect, and	and length contraction)	mechanics (e.g.
I can identify the limitations	wave-particle phenomenon.	I can describe the current	collapse, pilot wave,
of Newton's Laws of motion	I can use Planck's constant	scientific thinking	many worlds and
in relativistic and quantum	to determine the energy of	regarding weak nuclear	Copenhagen).
situations.	a photon.	force.	

PH30-MP2 Assess the effects of radioactivity and nuclear technology on society and the environment.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can compare the	I can differentiate between	I can describe the process of	I can analyze
characteristics of	controlled and uncontrolled	nuclear fusion and can identify	societal and
alpha, beta, and	fission reactions and can	difficulties related to using it as an	environmental
gamma radiation.	identify uses for both.	energy source.	impacts of nuclear
I can identify	I can use Einstein's equation	I can describe the current	technologies and the
natural and man-	and the idea of Conservation of	scientific thinking regarding	implications for
made sources of	Mass-Energy to determine the	strong nuclear force.	long and short term
radiation.	amount of energy released from	I can explain the concept of half-	exposure to
	a nuclear reaction.	life including simple calculations.	radiation.

Forces and Motion

PH30-FM1 Analyze motion in one- and two-dimensions, including uniform motion, uniformly accelerated motion, circular motion, and projectile motion.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can define uniform	I can solve problems	I can solve problems	I can solve problems involving all
motion, acceleration	involving uniform	involving all types of	types of motion, including vectors,
motion, projectile	motion including	motion, including vectors,	when manipulation is required.
motion and circular	uniform circular	when manipulation is not	I can design and carry out an
motion.	motion.	required.	experiment, following the scientific
I can provide		I can explain the motion	method, on an object that undergoes
examples of objects		of an object based on	accelerated or circular motion.
that undergo different		initial conditions (i.e.	I can critique the realism of objects in
types of motion.		circular motion,	motion from popular culture.
		projectile motion).	

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can state	I can use Newton's 3 Laws of	I can solve problems	I can solve problems involving
Newton's 3 laws	motion to describe the	involving force, mass and	force, mass and acceleration
of motion.	motion of objects.	acceleration using Free-	using Free-body diagrams and
	I can describe how inertia	body diagrams and	Newton's Second Law of Motion
	affects the motion of objects.	Newton's Second Law of	in two dimensions.
	I can draw free-body simple	Motion.	I can design and carry out an
	diagrams to represent the	I can describe how	experiment to investigate the
	forces acting on an object.	balanced and unbalanced	effect of changing mass and force
	I can determine net force	forces affect the motion of	on the acceleration of an object
	using Newton's Second Law	objects, including projectile	and describe the effect friction
	of motion.	and circular motion.	has on my overall results.

PH30-FM2 Analyze the effects of forces on objects undergoing uniform motion, uniformly accelerated motion and circular motion.

Conservation Laws

PH30-CO1 Investigate the nature of mechanical energy and efficiency in mechanical systems, including the law of conservation of energy.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can define	I can identify	I can perform calculations for kinetic	I can explain the law of
work, power,	situations where	and potential energy.	conservation of energy and
kinetic energy,	positive and	I can perform work calculations to	how it applies to various
potential energy	negative work takes	determine the change in energy for an	situations.
and total	place.	object.	I can use the law of
mechanical	I can calculate the	I can identify reasons that Total	conservation of energy to
energy.	work and power	Mechanical Energy fails in the world	determine all variables for a
	done on an object.	around me.	given situation.
		I can provide examples of elastic and	Investigate and explain the
		inelastic collisions in the world around	efficiency of everyday
		me.	objects.

PH30-CO2 Analyze the motion of objects and interactions between objects using momentum concepts, including the law of conservation of momentum.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can provide	I can determine the	I can solve problems	I can conduct an experiment
examples of	momentum of an object	involving momentum,	to determine conservation of
objects	when given its mass and a	impulse and law of	momentum in elastic and
experiencing	velocity.	conservations of momentum.	inelastic collisions.
impulse or	I can determine the impulse	I can provide examples of	I can analyze applications of
momentum.	of an object when given a	how momentum is conserved	the law of conservations of
	force and change in time.	in the world around me.	momentum.

Fields			
PH30-FI1 Investigate gr	avitational fields and their i	nteractions with matter.	
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can distinguish	I can determine	I can use Newton's Law of	I can explain
between weight and	gravitational field strength	Gravitation to solve for any	phenomenon that
mass.	and force of gravity that	variable.	relate to
I can determine the	acts on objects.	I can define microgravity and	gravitational fields
weight of an object.	I can describe how	provide examples of where it	(i.e. dark matter,
I can identify where	gravitational field strength	exists.	gravitational
gravitational field	changes with elevation.	I can describe why gravity is one of	waves).
strength would be	I can identify the 4	the four fundamental interactions.	
stronger.	fundamental interactions.		

PH30-FI2 Investigate electric and magnetic fields and their interactions with	matter.

Beginning (1)	Approaching (2) \Leftrightarrow Proficiency (3)		Mastery (4)
I can identify	I can use Coulomb's	I can describe (draw) electric and	I understand the relationship
where electric and	Law to determine the	magnetic field lines for various	between electric and
magnetic fields	electric force	scenarios.	magnetic fields and their
exist.	between two	I can use the left and right hand	application to technology.
I can determine	charges.	rules to determine the direction of a	I can explain phenomenon
the direction of	I can describe and	magnetic field.	related to electric and
electron flow	determine electric	I can manipulate equations for	magnetic fields (i.e. earth's
from a simple	field strength at	electric field strength and force to	magnetic field, solar flares,
circuit diagram.	varying distances.	solve for any variable.	auroras, particle accelerators,
		I can describe the current scientific	changes in animal migrations
		thinking regarding electromagnetic	and other health concerns)
		force.	