SRPSD Math Common Assessment

Grade

7

Instructions

Administering the Assessments

- 1. This assessment has been developed with the intention of being split up into individual outcomes and given upon completion of instruction/units throughout the year and **not** as a comprehensive test in June.
- 2. The division expectation is for the assessment to be given as **both** a pre (formative) and post (summative) assessment which will be entered into SRPSD database.
- 3. Use professional judgment on whether this assessment is given orally or in written form. The intent is to assess mathematical understanding.
- 4. Refer to the last few pages for any paper manipulatives needed to administer certain questions. Teachers will have to print off a copy for their class.
- 5. Calculator use is only allowed where indicated.
- 6. In the case that a student answers a level 4 question correctly but misses the level 2 or 3, the teacher will need to:
 - a) reassess
 - b) use professional judgment (teacher knows student best).
- 7. This assessment is not intended to assess ELA reading or writing outcomes therefore questions can be read to students and answers can be scribed when needed.
- 8. The corrected pre-tests are not to be showed to the students as it will affect post-test results.

Part A: Number Strand

N7.1 Demonstrate an understanding of division through the development and application of divisibility strategies for 2, 3, 4, 5, 6, 8, 9, and 10, and through an analysis of division involving zero.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able to use (2,	Student is able to use	Student is able to explain
assistance to use	5, 10) divisibility	divisibility strategies for a	their strategy for
divisibility	strategies for a given	given number including	dividing a quantity into
strategies.	number.	zero.	groups.

1. Write all of the numbers that are divisible

36 57 11 85 110 222 1000

- a) by 2
- b) by 5
- c) by 10
- 2. A grocery store sells potatoes in bags that weigh 4 KG. Explain with divisibility strategies whether you can buy exactly:

a) 45Kg

b) 128 Kg

c) 0 Kg

N7.2a Expand and demonstrate understanding of the addition, subtraction, multiplication, and division of decimals to greater numbers of decimal place.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able to	Student is able to add,	Student is able to solve
assistance to do	add and subtract	subtract, multiply, divide	situational problems and
operations with	decimals.	decimals, if needed, with the	justify the reasonableness
decimals.		use of a multiplication chart.	of the solution.

1. Solve the following:

a) 2.368 + 0.016

- b) 5.2-4.32
- c) 2.7 x 2.12
- d) $5.95 \div 0.5$

2. Dietta's family wants to go to the movies. To make a plan, she phones the theater to determine what the adult and student prices are. Using her note below determine how much it will cost for her entire family to go and watch a show.

Number of People	Individual Cost
2 Adults	\$8.75
3 Students	\$6.25

If you have \$40.00, do you have enough? Explain.

Part A: Number Strand					
N7.2b Expand and de	N7.2b Expand and demonstrate understanding of decimals using the order of operations.				
Beginning (1)Approaching (2)Proficiency (3)Mastery (4)					
Student needs	Student needs Student understands		Student explains where an		
assistance in	assistance in the order of operations		error has occurred in a		
determining the but is inconsistent in		order of operations with decimals.	problem involving decimals		
order of operations.	and order of operations.				

1. Solve the following:

a) $(9.8 - 3.2) \div (0.4 + 2.6)$

b) $0.38 + 16.2 \text{ x} (2.1 - 1.2) + 24 \div 0.8$

- 2. Aida and Norman got different answers for this problem: $12 \times (4.8 \div 0.3) 3.64 \times 3.5$ Aida's answer was 179.26 and Norman's answer was 659.26.
 - a) Which student did it wrong and where did they go wrong?

Name: _

Part A: Number Strand

N7.3 Demonstrate an understanding of the relationships between positive decimals, positive fractions (including mixed numbers, proper fractions and improper fractions), and whole numbers.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance to order	Student is able to order only a set of fractions	Student is able to order a set of numbers including	Student is able to order a set of numbers including
a set of numbers.	or a set of decimals but	fractions, decimals	fractions, decimals
	not when they are combined.	(repeating and terminating), and whole	(repeating and terminating), and whole numbers and
		numbers.	justify their thinking.

- 1. Order the following numbers:
 - a) 0.6, 0.85, 0.45, 0.4, 0.68
 - b) $\frac{2}{3}$, $\frac{1}{4}$, $\frac{3}{5}$, $\frac{3}{8}$
- 2. At a birthday party, the children ate the following portions of pizza.

Joshua ate 1 pepperoni pizza.

Nicholas ate
$$\frac{4}{3}$$
 of a cheese pizza.

Jesse ate $0.\overline{6}$ of a deluxe pizza.

Justin ate 1 $\frac{3}{4}$ of an all meat pizza.

- a) Matt ate an amount of pizza more than Nicholas and less than Justin. How much pizza did Matt eat?
- b) Use a strategy to order who ate the least to the most pizza.

N 7.4 Expand and demonstrate an understanding of percent to include fractional percent between 1% and 100%.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able to represent	Student is able to	Student can apply percent
assistance to	a fractional percent between	solve problems	to a real life situation and
represent percent.	1% and 100%.	involving percent.	justify their decision.

1. Complete the chart:

Per Cent	Decimal	Fraction
20%		

2. Joe got 3 out of 4 questions correct on his test. What percentage is that? Show your work below.

3. A SaskTel phone card regularly priced at \$20.00 is on sale for \$15.00. A Rogers's phone card valued at \$10.00 is on sale for \$7.00. Which of these offers the greatest discount?

N 7.5 Develop and demonstrate an understanding of adding and subtracting positive fractions and mixed numbers, with like and unlike denominators, concretely, pictorially, and symbolically (limited to positive sums and differences)

1			
Beginning (1) Approaching (2)		Proficiency (3)	Mastery (4)
Student needs	Student is able to add	Student is able to add and	Student is able to explain
assistance in	and subtract fractions	subtract fractions	how the sum or difference of
adding and	with like denominators.	including mixed numbers.	fractions can be represented
subtracting	(concretely, pictorially,	(concretely, pictorially,	symbolically in different
fractions.	symbolically)	symbolically)	ways.

1. Write each sum or difference.

a)
$$\frac{7}{5} + \frac{3}{5}$$
 b) $\frac{4}{8} - \frac{2}{8}$

c)
$$4\frac{1}{2} + 2\frac{1}{5}$$
 d) $3\frac{1}{10} - 1\frac{4}{5}$

e) Solve c) another way.

N7.6 Demonstrate an understanding of addition and subtraction of integers, concretely, pictorially, and symbolically.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able to add or	Student is able to add	Student is able to apply their
assistance in adding	subtract integers.	and subtract integers.	understanding of adding and
and subtracting	(concretely, pictorially,	(concretely, pictorially,	subtracting integers to a
integers.	symbolically)	symbolically)	situational problem.

1. Evaluate.

a) (+4) - (+2)

b) (-4) + (-7)

c) (-3) - (-5)

d) (-9) + (+9)

2. Nicholas is staying at a hotel for a swim meet in Saskatoon. He begins on the 3rd floor. He takes the elevator up 5 floors and then down 7 floors and gets off. With the aid of a picture, write a number sentence and identify what floor he is now on.

Part B: Pattern & Relations Strand

P7.1 Demonstrate an understanding of the relationships between oral and written patterns, graphs and linear relations.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student is able to create	Student is able to create a	Student is able to
to create a table of values	a table of values for a	table of values, graph it and	describe a real life
and graph a linear	linear relation and	describe the patterns found	situation related to
relation.	graph it.	in the graph.	a graph.

1. For the relation 4 + 2m is related to m

a) Complete table of values for the relation 4 + 2m

Input	Output

b) Graph the relation.

- c) Describe the patterns found in the graph.
- d) Describe a real-life situation that could be represented by the relation.

Part B: Pattern & Relations Strand				
P7.2 Demonstrate an understanding of equations and expressions by distinguishing between				
equations and expressions, evaluating expressions, and verifying solutions to equations.				
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)	

Ture D. Futterin & Relati	art b. rattern & Relations birand				
P7.2 Demonstrate an understanding of equations and expressions by distinguishing between					
equations and expressions, evaluating expressions, and verifying solutions to equations.					
Beginning (1)Approaching (2)Proficiency (3)Mastery (4)					
Student is able to explain or justify the difference between an expression	Student is able to create a table of values for an expression.	Student is able to determine the expression when given a table of	Student is able to give a real life situation for a given expression.		
and an equation.	expression.	values.	a given expression.		

1. 2n + 3 = 13 Is this an expression or an equation. Explain.

2. Complete the Input/Output table for **3m - 1**

Input	Output
1	
2	
3	
4	

3. Determine the expression from the Input/Output table.

Input	Output
1	5
2	7
3	9
4	11

4. For the expression you just wrote down, describe a real life situation it could represent.

Part B: Pattern & Relations Strand

P 7.3 Demonstrate an understanding of one- and two-step linear equations of the form ax/b + c = d (where a, b, c, and d are whole numbers, $c \le d$ and $b \ne 0$) by modeling the solution of the equations concretely, pictorially, physically, and symbolically and explaining the solution in terms of the preservation of equality.

si eservation or equanty.				
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)	
Student needs	Student is able to solve	Student is able to solve	Student is able to use a real life	
assistance to solve	one-step linear	two step linear	situation to solve an equation	
linear equations.	equations using whole	equations using whole	and verify the solution.	
	numbers.	numbers.		

1. Solve for the variable

a)
$$5n = 25$$
 b) $\frac{x}{4} = 16$

2. a)
$$3n + 4 = 16$$
 b) $72 + 2w = 288$

- Peter works as a counsellor at a summer camp. He is paid \$9.00 an hour. He was given a \$5 bonus for organizing a scavenger hunt. How many hours did Peter work if he was paid \$248.
 - a) Create an equation.

b) Explain the steps involved in solving the above equation and then solve. Verify your solution.

Part B: Pattern & Relations Strand

P7.4 Demonstrate an understanding of linear equations of the form (where a and b are integers) by modeling problems as a linear equation and solving the problems concretely, pictorially, and symbolically.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able to solve	Student is able to	Student is able to use a real life
assistance to solve	single step linear	solve single step	situation to solve a one- step
one step whole	equations only with	linear equations	linear equation (using integers)
number equations.	positive integers.	with integers.	and verify the solution.

- 1. Solve.
 - a) x + 3 = 10

b) x + (-4) = -11

2. At the end of the day, the temperature is -16°C. During the day it dropped 12°C. What was the temperature in the morning? Write an equation to represent, solve and verify.

Part C: Shape & Space Strand

SS 7.1 Demonstrate understanding of circles including circumference and central angles.

	0	0	0
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student understands	Student is able to solve	Student is able to solve
to label the	the relationship	the circumference of a	situational problems
circumference, radius	between radius, and	circle and understand	involving circles and
and diameter of a circle.	diameter.	what central angles are.	justify their answer.

- 1. If a radius of a circle is 3 cm,
 - a) What is the diameter?
 - b) What is the circumference?

c) What is the sum of the central angles in the circle?

- 2. A circular garden has a diameter of 2.4 m.
 - a) The garden is to be enclosed with plastic edging. How much edging is needed?

b) The edging costs \$4.53/m. You have a budget of \$40.00 will you have enough to buy the edging?

Part C: Shape & Space Strand

SS 7.2 Develop and apply	y formulas for	determini	ng the area of	f triangles, pa	arallelograms, and circles.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able to	Student is able to solve	Student is able to explain
assistance determining	determine the area of	real life problems	the development of area
the area of triangle,	triangle, parallelograms	involving triangles,	for triangles,
parallelogram, and	and circles using the	parallelograms, and	parallelograms, and
circle.	formulas.	circles.	circles.

1. Find the area of the following figures:

2. Suppose you were to paint inside each shape above. Which shape would require the most paint? How did you find out?

3. Given the square below, imagine a fold along the dotted line. Explain how folding the square on the dotted line can be used to discover the formula of a triangle.

Part C: Shape & Space Strand			
SS7.3 Demonstrate understanding of 2-D relationships involving lines and angles.			
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance identifying perpendicular and parallel lines.	Student is able to draw perpendicular and parallel lines.	Student is able to construct (using compass and straight edge) perpendicular and angle bisectors.	Student is able to create a design and identify constructions present in the design.

1. Bob is building a house. A picture of the frame is as follows:

b) Identify a set of **perpendicular** lines.

2. Use a straight edge and compass to draw a perpendicular bisector.

3. Given the following angle, use your compass and straight edge to cut the angle in half.

4. Construct a right \triangle angle that has angles 90°, 45°, 45°. Identify constructions used.

Part C: Shape & Space Strand

SS7.4 Demonstrate understanding of the Cartesian plane and ordered pairs with integral coordinates.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student is able to identify	Student is able to plot	Student is able to
in order to plot a point in	the location of a point in	points on a Cartesian	create a shape/design
all 4 quadrants.	all 4 quadrants.	plane in all 4 quadrants.	on a Cartesian plane.

1. Identify the points on the grid by their coordinates.

- 2. Plot each of the named points on the graph.
 - (a) Point A at (4, 2)
 - (b) Point B at (-5, 9)
 - (c) Point C at (3, -8)
 - (d) Point D at (0, 0)
 - (e) Point E at (-4, 0)
 - (f) Point F at (-6, -5)
 - (g) Point G at (0, 7)

3. Create a design using all four quadrants of the Cartesian plane using at least 8 ordered pairs. Identify the points on the grid by their coordinates.

Part C: Shape & Space Strand

SS7.5 Expand and demonstrate an understanding of transformations (translations, rotations, and reflections) of 2-D shapes in all four quadrants of the Cartesian plane.

	· · · · · · · · · · · · · · · · · · ·		
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Students can perform	Students can perform a	Students can interpret a
assistance in	a single	combination of	combination of successive
performing a	transformation of a	transformations of 2D	transformations in a 4
transformation in the	2D shape in a 4	shapes in a 4 quadrant	quadrant Cartesian plane.
positive quadrant of a	quadrant Cartesian	Cartesian plane.	
Cartesian plane.	plane.		

1. Use the grid to answer the questions below.

- a) Plot the points on a coordinate grid. Join the points to draw the quadrilateral.
 - A (2, 1) B (5, 1) C (5, 3) D (3, 3)
- b) Translate the 4 units to the right.
- c) Rotate your original picture about the origin 180° counter-clockwise.

2. a) Plot these points on a coordinate grid.

C (6,-3), D(-4,3), E(6,3)

Joint the points to draw CDE.

- b) Translate \triangle CDE 5 units left and 4 units up to image \triangle C'D'E'.
- c) Rotate \triangle C'D'E' -90° about the origin to image \triangle C"D"E".

Part D: Statistics & Probability Strand				
SP7.1 Demonstrate understanding of the measures of central tendency and range for sets of data.				
Beginning (1)	Beginning (1)Approaching (2)Proficiency (3)Mastery (4)			
Student needs assistance with	Student is able to calculate mean, median,	Student is able to solve problems involving the	Student is able to justify when an outlier will be or not be	
mean, median and	mode, but is inconsistent.	measure and central	used in reporting of the	
mean, median and mode.	mode, but is inconsistent.	tendency.	measure of central tendency	

1. This table shows the statistics for the goalies in a house league for hockey.

Goalie	Games Played
Foxx	7
Grey	10
White	3
Hawk	6
Payne	2
Reddy	7

- a) Find the median of the games played.
- b) Find the mean of the games played.
- c) Find the mode of the games played.
- d) Find the range of the points.
- e) Should the outlier be used when calculating the mean of the games played?

Part D: Statistics & Probability Strand					
SP7.2 Demonstrate understanding of circle graphs.					
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)		
Student needs assistance to answer questions about circle graphs.	Student is able to interpret a circle graph to answer questions.	Student is able to create and label a circle graph to display a set of data.	Student can translate percent displayed in a circle graph into quantities to solve a problem		

1. The results of the student council election are displayed on a circle graph. 500 students voted. The student with the most votes was named president.

a) Which student was named president? How do you know?

2. The table below shows the amount of money raised for a Walk-a-thon by the following students in one day.

Student	Amount Raised
Sally	20
Cameron	15
Abigail	35
Ashton	5
Alex	25

Display the data in a circle graph provided.

3. Given that the population of Canada is approximately 33 000 000. How many people live in Manitoba, Saskatchewan, British Columbia, Alberta, and Ontario?

Part D: Statistics & Probability Strand					
SP7.3 Demonstrate an understanding of theoretical and experimental probabilities for two					
independent events where the combined sample space has 36 or fewer elements.					
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)		
Student needs	Student is able to	Student is able to identify	Student understands how		
assistance in giving an	provide an example	the sample space of all	theoretical and experimental		
example of an	of two independent	possible outcomes and	probabilities are related and		
independent event.	events.	calculate probability.	why they may not be equal.		

1. List two independent events for a given situation.

2. A spinner has 3 equal sections labelled A, B, C. A bag contains 3 marbles: 1 grey, 1 black, and 1 white.

The pointer is spun and a marble is picked at random.

a) Use a tree diagram to list the possible outcomes.

- b) What is the probability of:
 - i. spinning A?
 - ii. picking a grey marble?
 - iii. spinning A and picking a white marble?
 - iv. spinning C and picking a pink marble?
- 3. The theoretical probability of tossing a coin and having the coin land heads up is $\frac{1}{2}$. Emma

conducted an experiment. She tossed the coin 100 times and the experimental results were as follows: 62 tosses heads, 38 tosses tails. Explain how theoretical and experimental probabilities are related and why they may not be equal.

Percent Circle

