Grade 6

SRPSD Math Common Assessment

Name:

Instructions

Administering the Assessments

- 1. This assessment has been developed with the intention of being split up into individual outcomes and given upon completion of instruction/units throughout the year and **not** as a comprehensive test in June.
- 2. The division expectation is for the assessment to be given as **both** a pre (formative) and post (summative) assessment which will be entered into SRPSD database.
- 3. Use professional judgment on whether this assessment is given orally or in written form. The intent is to assess mathematical understanding.
- 4. Refer to the last few pages for any paper manipulatives needed to administer certain questions. Teachers will have to print off a copy for their class.
- 5. Calculator use is only allowed where indicated.
- 6. In the case that a student answers a level 4 question correctly but misses the level 2 or 3, the teacher will need to:
 - a) reassess
 - b) use professional judgment (teacher knows student best).
- 7. This assessment is not intended to assess ELA reading or writing outcomes therefore questions can be read to students and answers can be scribed when needed.
- 8. The corrected pre-tests are not to be showed to the students as it will affect post-test results.

N6.1a Demonstrate understanding of place value greater than one million with and without technology.

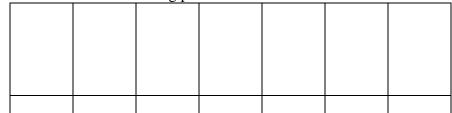
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)		
Student needs assistance	Student can	Student is able to	Student is able to solve		
with creating a place value	represent quantities	represent a quantity	problems that explore		
chart to represent quantities	over 1000000 in a	greater than 1 000 000	the quantity of numbers		
greater than 1 000 000.	place value chart.	in more than one way.	greater than 1 000 000.		

1. Label the following place value chart. Place 3 423 192 in it.

2. a) Say it or write the following number in words.

3 423 192

b) Write the number in expanded form. 3 423 192


3. How would you explain the student's error? A student read 5 000 264 as "five thousand two hundred sixty-four".

N6.1b Demonstrate understanding of place value less than one thousandth with and without technology.

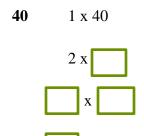
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student can represent	Students are able to	Student is able to solve
making a place value	quantities less than one	represent numbers less	problems that explore
chart to represent less	thousandth in a place	than one thousandth in	the quantity of less than
than one thousandth.	value chart.	more than one way.	one thousandth.

1. Place 0.2657 in the following place value chart.

2. a) Say it or write the following number in words.

0.2657

b) Write in expanded form.


0.2657

3. Write a number between 2.153 and 2.154.

N6.2a Demonstrate understanding of factors (concretely, pictorially, and symbolically) by determining factors of numbers less than 100, relating factors to multiplication and division, and determining and relating prime and composite numbers.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student is able to	Student is able to	Student is able to determine a set of	Student is able to
explain what a	make a partial list of	factors for a number less than one	solve a problem
factor is.	factors for a given	hundred and identify prime and	involving common
	number.	composite numbers.	factors.

1. Fill in the missing factors.

- 2. a) Write the set of factors for **36**.
 - b) Write the prime numbers from the above set of factors.
- 3. How many students signed up for the chess club? There are between 20 and 28 students signed up for the chess club. The students could not be divided exactly into groups of 2, 3, 4, or 5. Show your work.

Name:	
-------	--

N6.2b Demonstrate understanding of multiples (concretely, pictorially, and symbolically) by, determining factors and multiples of numbers less than 100 and relating multiples to multiplication and division.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student is able to	Student is able to make	Student is able to determine	Student is able to solve a
skip count.	a partial list of	multiples for a given number	problem involving
	multiples.	less than 100.	common multiples.

1. Fill in the missing multiples of 7.

7,	, 21,		, 42,	
/ •	, 41,	•	, 42,	

2. List the first ten multiples of 12.

3. A spider has 8 legs. An ant has 6 legs. There is a group of spiders and a group of ants. The groups have equal numbers of legs. What is the least number of spiders and ants in each group? Show your work.

N6.3 Demonstrate understanding of the order of operations on whole numbers (excluding exponents) with and without technology.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)				
Student is able to do	Student can list the	Student applies the rules of	Student is able to solve				
individual basic	order of operations.	order of operations with	questions involving				
operations.		and without technology.	multiple operations. (can				
			include error analysis)				

- 1. Consider the following expression $18 \times [4 + 2]$
 - a) What step would you do first?

b) What step would you do second?

2. Solve

$$6 \times 2 + 8 \div 4 =$$

3. Bianca did this question $4 \times (7 - 2 + 1)$. She got the answer 16. Is this right? Why or why not?

N6.4a Extend understanding of multiplication to decimals (1-digit whole number multipliers and 1-digit natural number divisors).

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)	
Student needs assistance to identify a situation where you would use multiplication and decimal numbers.	Student is able to estimate and place the decimal correctly.	Student can estimate and multiply decimals (1-digit whole number multipliers).	Student is able to solve situational problems and/or is able to critique statements involving multiplication.	

1. Place the decimal in the product.

$$8.25 \times 4 = 330$$

2. a) Estimate

b) Solve 4.85 x 5

- 3. Tianna has saved \$9.75 each week for 7 weeks. She wants to buy a snowboard that costs \$80.45, including tax.
 - a) Does Tianna have enough money? How do you know?

b) If your answer to part a is no, how much more money does Tianna need?

N6.4b Extend understanding of division to decimals (1-digit whole number multipliers and 1-digit natural number divisors).

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student is able to	Student can estimate	Student is able to solve
to identify a situation	estimate and place	and divide decimals	situational problems and/or
where you would use	the decimal	(1-digit whole	is able to critique statements
division and decimal	correctly.	number divisors).	involving division.
numbers.			

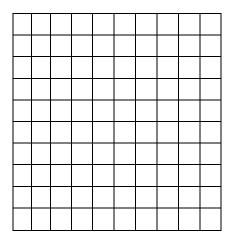
1. Place the decimal in the quotient.

$$3.81 \div 3 = 127$$

2. a) Estimate

$$27.\ 25 \div 5 =$$

b) Solve


$$27.25 \div 5$$

- 3. A student divided 1.374 by 4 and got 3.435.
 - a) Without dividing, how do you know the answer is incorrect?
 - b) What do you think the student did wrong?

N6.5 Demonstrate understanding of percent (limited to whole numbers to 100) concretely, pictorially, and symbolically.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student is able to	Student is able to	Student is able to convert	Student is able to convert
describe a	write the percent	between decimals, fractions	between decimals, fractions
situation involving	modelled concretely	(denominator=100), and	and/or percent in a
percent.	or pictorially.	percent.	situational problem.

1. a) Colour the hundred's grid, 20% red, 58% blue, 16% green, and 6% yellow.

b)	Write a	fraction	to describe	the part	of the	grid th	at is e	ach col	our.
~,			***		- -	5-1-0-01			

Red	Blue	Green	Yellow

2. Sam got 18 out of 20 on a math quiz. Joe got 85% on the quiz. Whose mark was greater? How do you know?

Name: _____

Part A: Number Strand

N6.6 Demonstrate understanding of integers concretely, pictorially, and symbolically.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student is able to	Student is able to	Student is able to	Student is able to find and
describe a situation	represent integers	order a set of integers	explain the pattern on each
where integers are used.	symbolically.	– pictorially.	side of the zero.

- 1. Write an integer to represent each situation.
 - a) 12° below zero
 - b) 10 m above sea level
- 2. Order these integers on a number line.

$$0, +4, -7, +2, -9, -1, +6$$

3. You know that 8 is greater than 3. Explain why -8 is less than -3.

N6.7 Extend understanding of fractions to improper fractions and mixed numbers.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student identifies the	Student is able to	Student is able to express	Student is able to order a
difference between a	represent an improper	improper fractions as	set of fractions, including
mixed number and an	fraction and a mixed	mixed numbers and vice	whole numbers and
improper fraction.	number.	versa.	improper fractions.

- 1. Write an improper fraction and a mixed number.
- 2. a) Write the mixed number as an improper fraction.

$$1\frac{1}{6}$$

b) Write the improper fraction as a mixed number.

$$\frac{17}{5}$$

3. Order these numbers $2\frac{1}{4}$, $\frac{5}{2}$, $\frac{6}{3}$. Show your work.

N6.8 Demonstrate an understanding of ratio concretely, pictorially, and symbolically.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student identifies	Student is able to	Student is able to represent ratios	Student is able to
or writes a ratio	express a ratio in	in colon, word, or fractional form	solve situational
with assistance.	colon and word form.	and compare part/whole and	problems involving
		part/part ratios.	ratios.

1. a) Write a ratio for the following picture in word form:

b) Write the above ratio in number form:

2. Write 4 different ratios for this picture. Explain what each ratio compares.

3. When are ratios and fractions the same thing? Give an example.

N6.9 Research and present how First Nations and Métis peoples, past and present, envision, represent, and use quantity in their lifestyles and worldviews.

Beginning	Approaching	Proficiency	Mastery
Student needs	Student is able to find	Student is able to research	Student is able to
assistance to	research on one FN & M	and present one First Nation	research, present, and
research one FN &	group's understanding	or Metis peoples	compare
M group's	of quantity but is not	understanding of quantity.	(similarities/differences)
understanding of	able to explain in their		between FN & M group
quantity but is not	own words or		and their own
able to explain in	represent.		understanding of
their own words.			quantity.

Still under construction.

This is an outcome that is suited more to a project and not a paper pencil test.

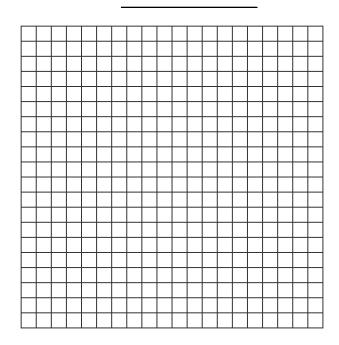
Part B: Pattern & Relations Strand

P6.1 Extend understanding of patterns and relationships in tables of values and graphs.

Beginning	Approaching	Proficiency	Mastery
Student is able to	Student is able to	Student is able to	Student is able to
determine missing	determine the input	determine the input to	describe the relationship
values in a table of	rule, and the output	output rule and graph the	between a table of values
values.	rule.	pattern.	and a graph.

P6.3 Extend understanding of patterns and relationships by using expressions and equations involving variables.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able write the	Student is able to write an	Student is able to use the
assistance in	pattern rule as an	equation and expression	equation or expression
determining the	expression.	using variables to represent	with a variable to extend
pattern rule.		a table of values.	a table of values.

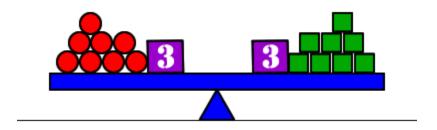

1. This table shows the input and output from a machine with two operations.

Input	Output
1	2
2	7
3	12
4	17

- a) Write the pattern rule for the input.
- b) Write the pattern rule for the output.
- c) Write a pattern rule that relates the input to the output.
- d) Write an expression to represent the pattern.
- e) Use the expression to find the output when the input is 20.

Name:

- f) If the output is 32 what is the equation?
- g) Graph the data from the table.


h) Describe the relationship shown on the graph.

Part B: Pattern & Relations Strand

P6.2 Extend understanding of preservation of equality concretely, pictorially, physically, and symbolically.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student is able to	Student is able to	Student is able to create and	Student is able to create
explain what equal	explain equivalent	record symbolically	and record symbolically
means.	forms pictorially or	equivalent forms of an	equivalent forms of an
	concretely.	equation.	equation using a variable.

1. Explain why the following teeter totter is balanced:

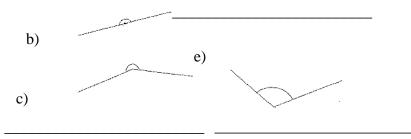
2. Solve each equation.

3 How do you know the equality has been preserved?.

$$3b = 7$$

$$3b + 2 = 7 + 2$$

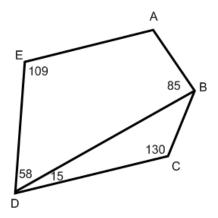
Part C: Shape and Space Strand


SS6.1 Demonstrate understanding of angles including:

- identifying examples classifying angles
- estimating the measure
- determining angle measures in degrees
- drawing angles
- applying angle relationships in triangles and quadrilaterals.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student is able to	Student is able to estimate and	11 5 0
assistance in	classify angles.	determine angle measures in	relationships in triangles
identifying examples		degrees and draw angles.	and quadrilaterals.
of angles.			

1. Name each angle as an acute angle, straight angle, reflex angle, obtuse angle or right angle.



2. a) Sketch a 35° angle. Measure your sketch. How close are you?

b) Take your protractor and draw an exact 35° angle.

Name: _____

3. Look at this pentagon.

- a) Find the measure of $\angle A$.
- b) Find the measure of \angle DBC. Show your work. Explain your thinking.

Part C: Shape & Space Strand

SS 6.2 Extend and apply understanding of perimeter of polygons, area of rectangles, and volume of right rectangular prisms (concretely, pictorially, and symbolically) including:

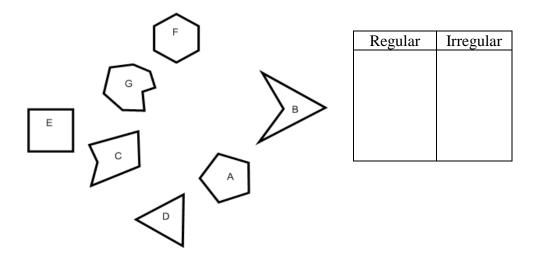
- relating area to volume
- comparing perimeter and area
- comparing area and volume
- generalizing strategies and formulae
- analyzing the effect of orientation
- solving situational questions.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student can relate	Student can relate	Student can solve
relating perimeter to area.	perimeter to area.	area to volume.	situational questions.

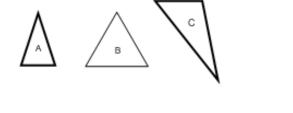
1. Matt's dog has a rectangular dog run. The length of the dog run is 5 m. The total area enclosed is 20 m². How wide is the dog run? Draw a diagram. What is the perimeter of the dog run?

2. a) Swimming pool has a base area of 50m^2 with a depth of 2m. What is its volume?

b) What are the possible dimensions of the pool? Sketch it.


Part C: Shape & Space Strand

SS6.3 Demonstrate understanding of regular and irregular polygons including:

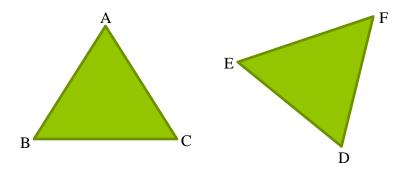

- classifying types of triangles
- comparing side lengths
- comparing angle measures
- differentiating between regular and irregular polygons
- analyzing for congruence.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student can differentiate	Student can classify	Student can analyze
describing regular and	between regular and irregular	types of triangles.	polygons for
irregular polygons.	polygons.		congruency.

1. Sort the following shapes into regular and irregular polygons.

- 2.
- a) Name each triangle as scalene, isosceles or equilateral.

b) Describe each triangle.


A_____

B_____

C_____

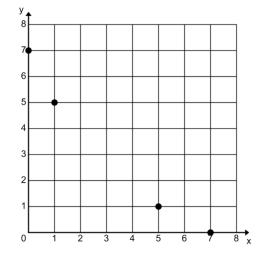
Name: _____

3. Are these two triangles congruent? If so, prove their congruency.

Part C: Shape & Space Strand

SS6.4 Demonstrate understanding of the first quadrant of the Cartesian plane and ordered pairs with whole number coordinates.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs assistance	Student can explain	Student can plot	Student can determine
explaining each number in	each number in an	points on a Cartesian	what scale to use on a
an ordered pair.	ordered pair.	plane.	Cartesian plane.

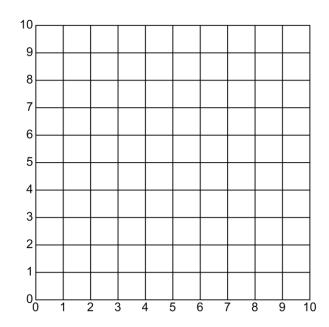

1. Match each ordered pair with a letter on the coordinate grid.

c)
$$(0,7)$$

2. Plot the coordinates of my vertices:

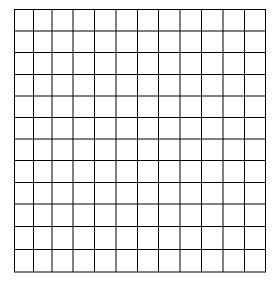
P (7,3)

Q (6,4)


R (6,5)

S (7,6)

T (8,6)

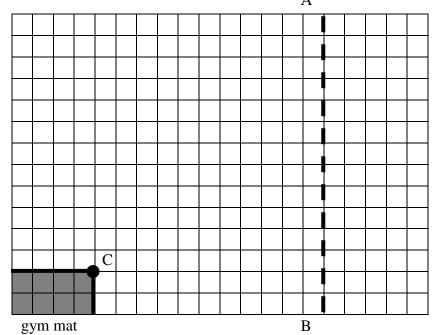

U (9,5) V (9,4)

V (9,4) W (8,3)

What am I?

- 3. Draw and label a coordinate grid. Plot each point on the grid. How did you decide which scale to use on the axes?
 - a) J (14, 20)
 - b) K (6, 12)
 - c) L (0, 18)
 - d) M(8, 4)
 - e) N (16, 0)

Part C: Shape & Space Strand


SS.6.5 Demonstrate understanding of single, and combinations of, transformations of 2-D shapes (with and without the use of technology) including:

- identifying
- describing
- performing.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student can perform a	Student can perform a	Student can interpret a
assistance in	single transformation	combination of	combination of
performing a single	of 2D shapes.	transformations of 2D	successive
transformation of 2D		shapes.	transformations of 2D
shapes.			shapes.

- 1. Mr. Lee moves a gym mat using the following four transformations.
 - 1. Rotate the gym mat 90_{\circ} clockwise ($\frac{1}{4}$ turn) about Point C.
 - 2. Translate the gym mat 8 units to the right.
 - 3. Reflect the gym mat over line AB.

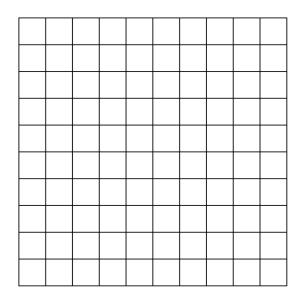
On the grid below, show the new location of the gym mat after Mr. Lee makes the four transformations. $\ensuremath{\mathsf{A}}$

2. Describe 2 successive transformations that move the shape to its image.

Part D: Statistics & Probability Strand

SP6.1 Extend understanding of data analysis to include:

- line graphs
- graphs of discrete data
- data collection through questionnaires, experiments, databases, and electronic media interpolation and extrapolation.


Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student can determine	Student is able to	Student can interpolate
assistance to determine	the best way to collect	use data to create a	and/or extrapolate the line
the best way to collect	data.	line graph.	graph or graphs of discrete
data.			data.

- 1. What is the most appropriate method of collecting data in the following situations?
- A. Experiment
- B. Database
- C. Interview
- D. Questionnaire
- E. Electronic

How many people in your school chew gum? _____ How long does it take for bread to mold on the counter? _____ What is the most watched video on U-tube? ____ How could you see if a book you wanted is in the library? ____

- 2. Josh weighs his new kitten at the end of each month for 8 months.
 - a) Use the provided grid paper to draw a line graph to show this data.

Month	Mass	
	(kg)	
1	1.0	
2	1.5	
3	2.0	
4	2.5	
5	3.0	
6	3.5	
7	4.0	
8	4.5	

- b) Is this graph a line (continuous) graph or a discrete graph?
- c) What is one conclusion you can make from this graph?


Part D: Statistics & Probability Strand

SP6.2 Demonstrate understanding of probability by:

- determining sample space
- differentiating between experimental and theoretical probability
- determining the theoretical probability
- determining the experimental probability
- comparing experimental and theoretical probabilities.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
Student needs	Student can	Student can determine	Student can differentiate
assistance determining	determine outcomes	theoretical and	between experimental and
outcomes for a given	for a given event.	experimental probability.	theoretical probability.
event.			

1. Ryan uses a spinner to choose a flavour of chewing gum.

P=Peppermint B=Bubblegum S=Spearmint C=Cherry

- a) What is the theoretical probability that Ryan will choose Spearmint?
- b) Which flavours have an equal chance of being chosen?
- c) Ryan spun the spinner 40 times. Here are his results:

Peppermint 17, Cherry 8, Spearmint 13, and Bubblegum 2

What is the experimental probability that Ryan will choose Spearmint?

d) How does this compare to the theoretical probability of Spearmint? Explain.