Student-Directed Study

CH30-SDS1 Create and carry out a plan to explore one or more topics of personal interest relevant to Chemistry 30 in depth.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can identify a personally relevant or	I can assemble a	I can demonstrate	I can use my deep
interesting topic and develop a	product demonstrating	a deep	understanding to show
proposal for a scientific investigation,	an understanding of a	understanding of	how my topic impacts
or a plan for an experiment, using the	Chemistry 30 related	my topic.	myself, society, and/or
scientific method.	topic of interest.		the scientific community.

Materials Science				
CH30-MS1 Examine the role of valence electrons in the formation of chemical bonds.				
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)	
I can identify how experimentation informs and revises theories in chemistry. Specifically the historical development	I can draw Lewis (electron-dot) structures for group 1 and 2 elements. I can use valence electrons to describe the formation of ions and the	I can explain the role of valence electrons in the formation of covalent and ionic bonds, including a connection to metals and non-metals. I can draw Lewis (electron-dot)	I can predict the arrangement of atoms in covalent and ionic compounds based on their Lewis (electron- dot) diagrams.	
of the model of the atom.	octet rule.	structures for ionic compounds.	, 3	

CH30-MS2 Investigate how the properties of materials are dependent on their underlying intermolecular and intramolecular forces.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can use chemical	I can describe and classify the	I can describe the different	I can design and/or carry
and physical	properties of different types	types of intermolecular [i.e.	out experiments to compare
properties to	of substances based on their	van der Waals (London	several physical and
describe materials.	bond type (i.e. ionic,	dispersion, dipole-dipole,	chemical properties of
I can identify the	molecular, metal, and	hydrogen bonding, ion-	various materials with
difference between	network covalent.).	dipole), ionic crystal, and	different bond types. I can
intermolecular and	I recognize that a substance's	network-covalent] and	construct a classification
intramolecular	physical properties are a	intramolecular (i.e. non-	system to categorize various
forces.	result of the types of bonds	polar covalent, polar-	materials of different bond
	and forces within the	covalent, ionic and	types based on their
	molecule.	metallic).	properties.

CH30-MS3 Explore the nature and classification of organic compounds, and their uses in modern materials.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can describe	I can use the appropriate models	I can identify different classes of	I can provide
how carbon's	to represent molecular and	organic compounds based on their	IUPAC names
valence shell	structural formulas. I can	functional groups (i.e. alcohols,	and/or illustrate
results in the	provide the IUPAC name for	aldehydes, ketones, etc.) I can	structural
diversity of	straight-chain alkanes, alkenes,	describe the importance of	formulas of
organic	and alkynes up to ten carbon	isomerization in various applications.	branched and
compounds.	atoms. I can identify examples of	I can describe applications of various	straight-chain
	organic consumer products.	classes of organic compounds.	isomers.

CH30-MS4 Determine the suitability of materials for use in specific applications.			
Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can identify criteria used to guide the choice of materials for a specific application.	I can suggest a range of suitable applications for a material based on its chemical and physical properties.	I can justify the use of the material chosen for a specific application based on student selected criteria.	I can investigate the potential of modern materials to change the way we live. I can analyze how a product has evolved in response to the development of new products. I can evaluate the risks and benefits to society and the environment of a product throughout its life cycle, from raw materials to production, use and disposal.

CH30-MS4 Determine the suitability of materials for use in specific applications

Chemical Equilibria

CH30-EQ1 Consider, qualitatively and quantitatively, the characteristics and applications of equilibrium systems in chemical reactions

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can identify	I can write the equilibrium	I can solve problems quantitatively	I can explain why solid
characteristics	constant (Keq) expression	related chemical equilibrium using	and liquid phases have
of a system at	for a variety of chemical	ICE charts. I can predict the shifts in	no effect on the values of
equilibrium.	reactions. I can recognize	equilibrium caused by changes in	an equilibrium constant.
	that equilibrium constant	temperature, pressure, volume,	I can use the Keq to
	(Keq) values are dependent	concentration or the addition of a	determine the change in
	upon pressure and	catalyst using Le Chatelier's	upper level ICE chart
	temperature but are	principle. I can interpret Keq values	questions. I can explain
	independent of	to determine whether the	how industry uses
	concentration and the	concentration of products reactants	equilibrium to optimize
	presence of a catalyst.	or neither is favoured once	yield.
		equilibrium has been reached.	

CH30-EQ2 Analyze aqueous solution equilibria including solubility-product constants

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can discuss	I can interpret solubility	I can analyze how	I can predict whether a
conditions	curves of selected	temperature and the	precipitate will occur in a
necessary for the	substances.	common ion effect	double replacement reaction
establishment of	I can calculate the solubility	influence the solubility of	when given the initial
equilibrium in	product constant (Ksp) for	substance in aqueous	concentration of reactants and
aqueous	saturated solutions, given	solution. I can use data to	solubility product constants
solution.	solute concentrations.	create a solubility graph.	(Ksp) values of the products.

CH30-EQ3 Observe and analyze phenomena related to acid-base reactions and equilibrium.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can identify	I can discuss the	I can solve problems	I can perform acid-base titrations and
examples of acid-	relationship between	involving pH, pOH,	relevant calculations for multiple
base reactions in	$[H^+]/[H_3O^+]$ and $[OH^-]$	[H ⁺]/[H ₃ O ⁺], [OH ⁻], K _w , K _a ,	ratios of $[H^+]/[H_30^+]$ to $[OH^-]$,
household and] in the dissociation	and K _b .	including those for reactions that
industrial	of water, to explain	I can identify conjugate acids	either reach the endpoint/equivalence
products.	K _w and perform	and bases formed in acid-	point or represent over-titration. I
	relevant calculations.	base reactions. I can also	can interpret pH titration curves for
		differentiate between strong	various combinations of acids and
		vs. weak and concentrated	bases identifying endpoints and
		vs. dilute.	choosing appropriate indicators.

Electrochemistry CH30-EC1 Investigate the chemistry of oxidation and reduction (redox) reactions **Proficiency (3) Beginning** (1) Approaching (2) Mastery (4) I can define I can compare the I can write and balance net redox I can compare electrochemical oxidation and characteristics of equations using the half reaction and and electrolytic cells in terms redox reactions with of electron flow/transfer, and reduction in oxidation number method. terms of electron other types of I can illustrate and label the parts of chemical change. Design or transfer and the chemical reactions. I electrochemical and electrolytic cells construct or evaluate a can assign oxidation and explain how they work, including role of oxidizing prototype of a working battery and reducing numbers. half-reactions, flow of ions and flow that meets specific student of electrons. I can predict the electric identified criteria such as agents. potential and spontaneity of various powering a small electric cells using reduction potentials. device.

CH30-EC2 Examine applications of electrochemistry and their impact on society and the environment.

Beginning (1)	Approaching (2)	Proficiency (3)	Mastery (4)
I can provide	I can predict how	I can investigate the	I can design or carry out experiments
examples of redox	applications of	process of corrosion	which illustrate the process of
reactions that occur in	electrochemistry	and its prevention.	electrolysis and electroplating. I can
nature and in	may impact society		research and discuss the issue of storage
technological	and the environment.		of electrical energy as a barrier to large
processes.			scale adoption of renewable energy
			resources.