Kindergarten

NK. 1
Say the whole number sequence by 1 s starting anywhere from 0 to 10 and from 10 to 0 .

N1.1
Say the number sequence, 0 to 100 , by: $\circ 1 \mathrm{~s}$ forward and backward between any two given numbers
${ }^{\circ} 2$ s to 20 , forward starting at 0
$\circ 5 \mathrm{~s}$ and 10 s to 100 , forward starting at 0 .

N2.1
Demonstrate understanding of whole numbers to 100 (concretely, pictorially, physically, orally, in writing, and symbolically) by:•representing (including place value)

- describing
-skip counting
odifferentiating between odd and even
numbers
${ }^{\circ}$ estimating with referents
${ }^{\circ}$ comparing two numbers - ordering three or more numbers.

NK. 2
Recognize, at a glance, and name familiar arrangements of 1 to 5 objects, dots, or pictures.

NK. 3
Relate a numeral, 0 to 10 , to its respective quantity.

NK. 5
Compare quantities, 0 to 10 , using one-toone correspondence.

N1.2
Recognize, at a glance, and name familiar arrangements of 1 to 10 objects, dots, and pictures.

N1.4
Represent and describe whole numbers to 20 concretely, pictorially, and symbolically.

N1.5
Compare sets containing up to 20 elements to solve problems using: \circ referents (known quantity)
${ }^{\circ}$ one-to-one correspondence.

N1.6
Estimate quantities to 20 by using referents.

N1.7
Demonstrate, concretely, physically, and pictorially, how whole numbers can be represented by a variety of equal groupings with and without singles.

N1.8
Identify the number, up to 20 , that is one more, two more, one less, and two less than a given number.

NK. 4
Represent the partitioning of whole numbers (1 to 10) concretely and pictorially.

N1.3
N2.2
Demonstrate an understanding of counting Demonstrate understanding of addition by:*indicating that the last number said identifies "how many"
oshowing that any set has only one count using the counting on strategy
${ }^{\circ}$ using parts or equal groups to count sets.
N1.9
Demonstrate an understanding of addition
of numbers with answers to 20 and the corresponding subtraction facts, concretely, pictorially, physically, and symbolically by:ousing familiar and mathematical language to describe additive and subtractive actions from their experience
${ }^{\circ}$ creating and solving problems in context that involve addition and subtraction - modelling addition and subtraction using a statements
variety of concrete and visual
representations, and recording the process symbolically. N1.10
Describe and use mental mathematics strategies (memorization not intended), such as: ${ }^{\circ}$ counting on and counting back - making 10
-doubles
${ }^{\circ}$ using addition to subtract
to determine basic addition facts to 18 and
related subtraction facts.
(limited to 1 and 2-digit numerals) with answers to 100 and the corresponding subtraction by:orepresenting strategies for adding and subtracting concretely,
pictorially, and symbolically
${ }^{\circ}$ creating and solving problems involving
addition and subtraction
${ }^{\circ}$ estimating
-using personal strategies for adding and subtracting with and without the support of manipulatives
oanalyzing the effect of adding or subtracting zero
-analyzing the effect of the ordering of the quantities (addends, minuends, and subtrahends) in addition and subtraction

PK. 1 Demonstrate an understanding of repeating patterns (two or three elements) by:oidentifying oreproducing ${ }^{\circ}$ extending ${ }^{\circ}$ creating patterns using manipulatives, sounds, and actions.	P1.1 Demonstrate an understanding of repeating patterns (two to four elements) by: ${ }^{\circ}$ describing oreproducing - extending ${ }^{\circ}$ creating patterns using manipulatives, diagrams, sounds, and actions. P1.2 Translate repeating patterns from one form of representation to another.	P2.1 Demonstrate understanding of repeating patterns (three to five elements) by: ${ }^{\circ}$ describing -representing patterns in alternate modes ${ }^{\circ}$ extending ${ }^{\circ}$ comparing ${ }^{\circ}$ creating patterns using manipulatives, pictures, sounds, and actions. P2.2 Demonstrate understanding of increasing patterns by:*describing oreproducing ${ }^{\circ}$ extending ${ }^{\circ}$ creating patterns using manipulatives, pictures, sounds, and actions (numbers to 100).
	P1.3 Describe equality as a balance and inequality as an imbalance, concretely, physically, and pictorially (0 to 20). P1.4 Record equalities using the equal symbol.	P2.3 Demonstrate understanding of equality and inequality concretely and pictorially (0 to 100) by:orelating equality and inequality to balance ${ }^{\circ}$ comparing sets orecording equalities with an equal sign orecording inequalities with a not equal sign -solving problems involving equality and inequality.

Use direct comparison to compare two objects based on a single attribute, such as:- length including height
-mass

- volume
${ }^{\circ}$ capacity.

SS1.1
Demonstrate an understanding of measurement as a process of comparing by:•identifying attributes that can be compared
${ }^{\circ}$ ordering objects
-making statements of comparison -filling, covering, or matching.

SS2. 1
Demonstrate understanding of nonstandard units for linear measurement by: ${ }^{\circ}$ describing the choice and appropriate use of non-standard units
${ }^{\circ}$ estimating

- measuring
${ }^{\circ}$ comparing and analyzing measurements.

SS2. 2
Demonstrate understanding of non-
standard units for measurement of mass
by: ${ }^{\circ}$ describing the choice and appropriate use of non-standard units
${ }^{\circ}$ estimating

- measuring
${ }^{\circ}$ comparing and analyzing measurements.

SSK. 2
Sort 3-D objects using a single attribute.

SS1. 2
Sort 3-D objects and 2-D shapes using one attribute, and explain the sorting rule.

SS2.3
Describe, compare, and construct 3-D
objects, including: ${ }^{\circ}$ cubes
${ }^{\circ}$ spheres
${ }^{\circ}$ cones
${ }^{\circ}$ cylinders
${ }^{\circ}$ pyramids.
SS2.4
Describe, compare, and construct 2-D
shapes, including॰triangles
osquares
orectangles
${ }^{\circ}$ circles.

SS2.5
Replicate composite 2-D shapes and 3-D objects. SS1.4 Compare 2-D shapes to parts of 3-D objects objects. in the environment.

Demonstrate understanding of the relationship between 2-D shapes and 3-D

SP2.1
Demonstrate understanding of concrete graphs and pictographs.

Grade 3	Grade 4	Grade 5
Number Strand		
N3.1	N4.1	N5.1
Demonstrate understanding of whole numbers to 1000 (concretely, pictorially, physically, orally, in writing, and symbolically) including:*representing	Demonstrate an understanding of whole numbers to 10000 (pictorially, physically, orally, in writing, and symbolically) by:orepresenting	Represent, compare, and describe whole numbers to 1000000 within the contexts of place value and the base ten system, and quantity.
(including place value)	- describing	Demonstrate understanding of decimals to
-describing	- comparing two numbers	thousandths by:*describing and
${ }^{\circ}$ estimating with referents	${ }^{\circ}$ ordering three or more numbers.	representing
${ }^{\circ}$ comparing two numbers	N4.7	orelating to fractions
${ }^{\circ}$ ordering three or more numbers.	Demonstrate an understanding of decimal numbers in tenths and hundredths (pictorially, orally, in writing, and symbolically) by:。describing orepresenting orelating to fractions.	${ }^{\circ}$ comparing and ordering.

N5.4
Develop and apply personal strategies for estimation and computation
including: ofront-end rounding

- compensation
${ }^{\circ}$ compatible numbers.

N3.2	N4.2	N5.7
Demonstrate understanding of addition of whole numbers with answers to 1000 and their corresponding subtractions (limited to 1,2 , and 3 -digit numerals) including: ${ }^{\text {representing strategies for }}$ adding and subtracting concretely, pictorially, and symbolically osolving situational questions involving addition and subtraction ${ }^{\circ}$ estimating using personal strategies for adding and subtracting.	Demonstrate an understanding of addition of whole numbers with answers to 10000 and their corresponding subtractions (limited to 3 and 4-digit numerals) by:ousing personal strategies for adding and subtracting ${ }^{\circ}$ estimating sums and differences ${ }^{\circ}$ solving problems involving addition and subtraction. N4.8 Demonstrate an understanding of addition and subtraction of decimals limited to hundredths (concretely, pictorially, and symbolically) by: ousing compatible numbers - estimating sums and differences -using mental math strategies ${ }^{\circ}$ solving problems.	Demonstrate an understanding of addition and subtraction of decimals (limited to thousandths).

N3.3
Demonstrate understanding of multiplication to 5×5 and the corresponding division statements including:•representing and explaining using repeated addition or subtraction, equal grouping, and arrays ${ }^{\circ}$ creating and solving situational questions -modelling processes using concrete, physical, and visual representations, and recording the process symbolically orelating multiplication and division.

N3.4
Demonstrate understanding of fractions concretely, pictorially, physically, and orally including:•representing ${ }^{\circ}$ observing and describing situations ${ }^{\circ}$ comparing
${ }^{\circ}$ relating to quantity.

N4.3
Demonstrate an understanding of multiplication of whole numbers (limited to numbers less than or equal to 10)
by: ${ }^{\circ}$ applying mental mathematics strategies
${ }^{\circ}$ explaining the results of multiplying by 0 and 1
N4.4
Demonstrate an understanding of multiplication (2- or 3-digit by 1-digit) by:ousing personal strategies for multiplication, with and without concrete materials

- using arrays to represent multiplication ${ }^{\circ}$ connecting concrete representations to symbolic representations
- estimating products
osolving problems. N4.5
Demonstrate an understanding of division
(1-digit divisor and up to 2-digit dividend)
to solve problems by: ousing personal strategies for dividing with and without concrete materials
${ }^{\circ}$ estimating quotients
${ }^{\circ}$ explaining the results of dividing by 1 osolving problems involving division of whole numbers
orelating division to multiplication.

N4.6

Demonstrate an understanding of fractions less than or equal to one by using concrete and pictorial representations to: \curvearrowleft name and record fractions for the parts of a whole or a set
${ }^{\circ}$ compare and order fractions - model and explain that for different wholes, two identical fractions may not represent the same quantity oprovide examples of where fractions are used.

N5.2
Analyze models of, develop strategies for, and carry out multiplication of whole numbers. N5.3 Demonstrate, with and without concrete materials, an understanding of division (3digit by 1-digit) and interpret remainders to solve problems.

N5.5
Demonstrate an understanding of fractions by using concrete and pictorial representations to: ${ }^{\circ}$ create sets of equivalent fractions - compare fractions with like and unlike denominators.

Demonstrate understanding of increasing and decreasing patterns
including:•observing and describing ${ }^{\circ}$ extending

- comparing
${ }^{\circ}$ creating patterns using manipulatives, pictures, sounds, and actions.

Demonstrate understanding of equality by solving one-step addition and subtraction equations involving symbols representing an unknown quantity.

P4.1
Demonstrate an understanding of patterns and relations by:oidentifying and
describing patterns and relations in a chart, table or diagram
oreproducing patterns and relations in a chart, table, or diagram using manipulatives
${ }^{\circ}$ creating charts, tables, or diagrams to represent patterns and relations ${ }^{\circ}$ solving problems involving patterns and relations

P4.2
Demonstrate an understanding of equations involving symbols to represent an unknown value by: ${ }^{\circ}$ writing an equation to represent a problem
osolving one step equations.

P5.1
Represent, analyse, and apply patterns using mathematical language and notation.

P5.2
Write, solve, and verify solutions of singlevariable, one-step equations with whole number coefficients and whole number solutions.

Shape \& Space Strand

SS4.1
Demonstrate an understanding of time
by:oreading and recording time using
digital and analog clocks (including 24 hour clocks)
oreading and recording calendar dates in a variety of formats.

SS3.3 Demonstrate understanding of linear measurement (cm and m) including:selecting and justifying referents ogeneralizing the relationship between cm and m ${ }^{\circ}$ estimating length and perimeter using referents ${ }^{\circ}$ measuring and recording length, width, height, and perimeter.	SS4. 2 Demonstrate an understanding of area of regular and irregular 2-D shapes by: orecognizing that area is measured in square units oselecting and justifying referents for the units cm^{2} or m^{2} ${ }^{\circ}$ estimating area by using referents for cm^{2} or m^{2} - determining and recording area (cm^{2} or m^{2}) ${ }^{\circ}$ constructing different rectangles for a given area (cm^{2} or m^{2}) in order to demonstrate that many different rectangles may have the same area.	SS5.1 Design and construct different rectangles given either perimeter or area, or both (whole numbers), and draw conclusions. SS5.2 Demonstrate understanding of measuring length (mm) by:*selecting and justifying referents for the unit mm omodelling and describing the relationship between mm, cm, and m units SS5.3 Demonstrate an understanding of volume by:oselecting and justifying referents for cm^{3} or m^{3} units ${ }^{\circ}$ estimating volume by using referents for cm^{3} or m ${ }^{3}$ ${ }^{\circ}$ measuring and recording volume $\left(\mathrm{cm}^{3}\right.$ or m^{3}) ${ }^{\circ}$ constructing rectangular prisms for a given volume. SS5.4 Demonstrate understanding of capacity by:ㅇdescribing the relationship between mL and L oselecting and justifying referents for mL or L units ${ }^{\circ}$ estimating capacity by using referents for mL or L -measuring and recording capacity (mL or

SS3.2
Demonstrate understanding of measuring mass in g and kg by:oselecting and justifying referents for g and kg -modelling and describing the relationship between g and kg oestimating mass using referents ${ }^{\circ}$ measuring and recording mass.

SS3. 4

Demonstrate understanding of 3-D objects by analyzing characteristics including faces edges, and vertices.
SS3.5
Demonstrate understanding of 2-D shapes (regular and irregular) including triangles, quadrilaterals, pentagons, hexagons, and octagons including: ${ }^{\circ}$ describing
${ }^{\circ}$ comparing
osorting.

SS4.3
Demonstrate an understanding of rectangular and triangular prisms by:oidentifying common attributes ${ }^{\circ}$ comparing
${ }^{\circ}$ constructing models.

SS5.5
Describe and provide examples of edges and faces of 3-D objects, and sides of 2-D shapes that are: ${ }^{\circ}$ parallel
ointersecting

- perpendicular
- vertical
-horizontal.
SS5.6
Identify and sort quadrilaterals,
including:॰rectangles
osquares
- trapezoids
- parallelograms
orhombuses
according to their attributes.

SS4. 4
Demonstrate an understanding of line symmetry by:oidentifying symmetrical 2-D shapes
${ }^{\circ}$ creating symmetrical 2-D shapes

- drawing one or more lines of symmetry in a 2-D shape.

SS5.7
Identify, create, and analyze single
transformations of 2-D shapes (with and without the use of technology).

SP3.1

Demonstrate understanding of first-hand data using tally marks, charts, lists, bar graphs, and line plots (abstract pictographs), through: ${ }^{\circ}$ collecting, organizing, and representing osolving situational questions.

Statistics \& Probability Strand

SP4.1

Demonstrate an understanding of many-toone correspondence by: ${ }^{\circ}$ comparing correspondences on graphs -justifying the use of many-to-one correspondences
ointerpreting data shown using a many-toone correspondence
${ }^{\circ}$ creating bar graphs and pictographs using many-to-one correspondence.

SP5.2
Construct and interpret double bar graphs to draw conclusions. SP5.1 Differentiate between first-hand and second-hand data.

SP5.3
Describe, compare, predict, and test the likelihood of outcomes in probability situations.

N6.1
Demonstrate understanding of place value including: ${ }^{\circ}$ greater than one million

- less than one thousandth

N6.5
Demonstrate understanding of percent (limited to whole numbers to 100)
concretely, pictorially, and symbolically. N6.6
Demonstrate understanding of integers concretely, pictorially, and symbolically.

N7.5
Develop and demonstrate an
understanding of adding and subtracting
positive fractions and mixed numbers, with
like and unlike denominators, concretely,
pictorially, and symbolically (limited to
positive sums and differences).
N7.6
Demonstrate an understanding of addition and subtraction of integers, concretely, pictorially, and symbolically.

N6.4
Extend understanding of multiplication and Demonstrate an understanding of division division to decimals (1-digit whole number through the development and application multipliers and 1-digit natural number divisors).
Demonstrate understanding of factors and multiples (concretely, pictorially, and symbolically) including:*determining factors and multiples of numbers less than 100
-relating factors and multiples to multiplication and division -determining and relating prime and composite numbers.

N6.7

Extend understanding of fractions to improper fractions and mixed numbers. N6.8
Demonstrate an understanding of ratio concretely, pictorially, and symbolically.

N6.3

Demonstrate understanding of the order of operations on whole numbers (excluding exponents) with and without technology.

N7.3

Demonstrate an understanding of the relationships between positive decimals, positive fractions (including mixed numbers, proper fractions and improper fractions), and whole numbers.

N7.4
Expand and demonstrate an understanding
of percent to include fractional percents between 1% and 100%.

N8.1
Demonstrate understanding of the square
and principle square root of whole
numbers concretely or pictorially and symbolically. N8.5 Demonstrate understanding of multiplication and division of integers concretely, pictorially, and symbolically.

N8.2
Expand and demonstrate understanding of percents greater than or equal to 0% (including fractional and decimal percents) concretely, pictorially, and symbolically. N8.3
Demonstrate understanding of rates, ratios, and proportional reasoning concretely, pictorially, and symbolically. N8.4 Demonstrate understanding of multiplying and dividing positive fractions and mixed numbers, concretely, pictorially, and symbolically.

N7.2
Expand and demonstrate understanding of the addition, subtraction, multiplication, and division of decimals to greater numbers of decimal places, and the order of operations.

N6.9

Research and present how First Nations and Métis peoples, past and present, envision, represent, and use quantity in their lifestyles and worldviews.

P6.1 Extend understanding of patterns and relationships in tables of values and graphs. P6. 3 Extend understanding of patterns and relationships by using expressions and equations involving variables.	P7.1 Demonstrate an understanding of the relationships between oral and written patterns, graphs and linear relations. P7.2 Demonstrate an understanding of equations and expressions by:॰distinguishing between equations and expressions ${ }^{\circ}$ evaluating expressions overifying solutions to equations.	P8. 1 Demonstrate understanding of linear relations concretely, pictorially (including graphs), physically, and symbolically.
P6. 2	P7.3	P8.2
Extend understanding of preservation of equality concretely, pictorially, physically, and symbolically.	Demonstrate an understanding of one- and two-step linear equations of the form ax / b $+\mathrm{c}=\mathrm{d}$ (where $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are whole numbers, $\mathrm{c} \leq \mathrm{d}$ and $\mathrm{b} \neq 0$) by modeling the solution of the equations concretely, pictorially, physically, and symbolically and explaining the solution in terms of the preservation of equality. P7.4 Demonstrate an understanding of linear equations of the form (where a and b are integers) by modeling problems as a linear equation and solving the problems concretely, pictorially, and symbolically.	Model and solve problems using linear equations of the form: $a \mathrm{ax}=\mathrm{b}$ $\begin{aligned} & \circ x / a=b, a \neq 0 \\ & \circ a x+b=c \\ & \circ x / a+b=c, a \neq 0 \\ & \circ a(x+b)=c \end{aligned}$ concretely, pictorially, and symbolically, where a, b, and c are integers.

SS6. 2 Extend and apply understanding of perimeter of polygons, area of rectangles, and volume of right rectangular prisms (concretely, pictorially, and symbolically) including:•relating area to volume ${ }^{\circ}$ comparing perimeter and area ${ }^{\circ}$ comparing area and volume \circ ogeneralizing strategies and formulae oanalyzing the effect of orientation osolving situational questions.	SS7. 2 Develop and apply formulas for determining the area of: otriangles - parallelograms ${ }^{\circ}$ circles.	SS8. 1 Demonstrate understanding of the Pythagorean Theorem concretely or pictorially and symbolically and by solving problems. SS8. 2 Demonstrate understanding of the surface area of 3-D objects limited to right prisms and cylinders (concretely, pictorially, and symbolically) by:analyzing views osketching and constructing 3-D objects, nets, and top, side, and front views ogeneralizing strategies and formulae -analyzing the effect of orientation ${ }^{\circ}$ solving problems. SS8. 3 Demonstrate understanding of volume limited to right prisms and cylinders (concretely, pictorially, or symbolically) by:relating area to volume -generalizing strategies and formulae -analyzing the effect of orientation ${ }^{\circ}$ solving problems.

Demonstrate understanding of regular and irregular polygons including: ${ }^{\circ}$ classifying types of triangles
${ }^{\circ}$ comparing side lengths
${ }^{\circ}$ comparing angle measures
-differentiating between regular and
irregular polygons
-analyzing for congruence.
SS6.4
Demonstrate understanding of the first quadrant of the Cartesian plane and ordered pairs with whole number coordinates. SS6.5
Demonstrate understanding of single, and combinations of, transformations of 2-D shapes (with and without the use of technology) including:*identifying - describing
-performing.

SS6.1
Demonstrate understanding of angles including:*identifying examples classifying angles
${ }^{\circ}$ estimating the measure
-determining angle measures in degrees -drawing angles -applying angle relationships in triangles and quadrilaterals.

SS7. 1
Demonstrate an understanding of circles including circumference and central angles. SS7.4
Demonstrate an understanding of the Cartesian plane and ordered pairs with integral coordinates.
Expand and demonstrate an understanding of transformations (translations, rotations, and reflections) of 2-D shapes in all four quadrants of the Cartesian plane. [CN, PS, T, V]

SS8.4
Demonstrate an understanding of tessellation by: ${ }^{\circ}$ explaining the properties of shapes that make tessellating possible

${ }^{\circ}$ creating tessellations

-identifying tessellations in the environment.

SS7. 3
Demonstrate an understanding of 2-D
relationships involving lines and angles.

SP6.1

Extend understanding of data analysis to include:oline graphs

- graphs of discrete data
-data collection through questionnaires, experiments, databases, and electronic media
ointerpolation and extrapolation.

SP7. 1

Demonstrate an understanding of the measures of central tendency and range for sets of data.
Demonstrate an understanding of circle graphs.

SP8.1
Analyze the modes of displaying data and the reasonableness of conclusions. SP7.2

SP6.2
Demonstrate understanding of probability by:•determining sample space

- differentiating between experimental and theoretical probability
- determining the theoretical probability
- determining the experimental probability ${ }^{\circ}$ comparing experimental and theoretical probabilities.

SP7.3
Demonstrate an understanding of theoretical and experimental probabilities for two independent events where the combined sample space has 36 or fewer elements.

SP8.2
Demonstrate understanding of the probability of independent events concretely, pictorially, orally, and symbolically.

Grade 9

N9.1
Demonstrate (concretely, pictorially, and symbolically) understanding of powers with integral bases (excluding base 0) and whole number exponents
including:representing using powers ${ }^{\circ}$ evaluating powers
opowers with an exponent of zero
${ }^{\circ}$ solving situational questions.
N9.3
Extend understanding of square roots to include the square root of positive rational numbers

N9.2

Demonstrate understanding of rational numbers including: ${ }^{\circ}$ comparing and ordering
orelating to other types of numbers osolving situational questions.

P9. 1
Demonstrate understanding of linear
relations including:*graphing
-analyzing
ointerpolating and extrapolating
osolving situational questions.

P9. 2
Model and solve situational questions using
linear equations of the form: $a \mathrm{ax}=\mathrm{b}$
${ }^{\circ} \mathrm{x} / \mathrm{a}=\mathrm{b}, \mathrm{a} \neq 0$

- $a x+b=c$
${ }^{\circ} \mathrm{x} / \mathrm{a}+\mathrm{b}=\mathrm{c}, \mathrm{a} \neq 0$
${ }^{\circ} \mathrm{ax}=\mathrm{b}+\mathrm{cx}$
${ }^{\circ} a(x+b)=c$
- $a x+b=c x+d$
${ }^{\circ} a(b x+c)=d(e x+f)$
oa/ $\mathrm{x}=\mathrm{b}, \mathrm{x} \neq 0$
where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, and f are rational
numbers.
P9.3
Demonstrate understanding of single
variable linear inequalities with rational coefficients including: osolving inequalities -verifying
${ }^{\circ}$ comparing
॰graphing.

P9.4
Demonstrate understanding of polynomials (limited to polynomials of degree less than or equal to 2) including: \circ modeling ogeneralizing strategies for addition, subtraction, multiplication, and division -analyzing orelating to context ${ }^{\circ}$ comparing for equivalency.

SS9.2
Extend understanding of area to surface area of right rectangular prisms, right cylinders, right triangular prisms, to composite 3-D objects.

SS9. 1
Demonstrate understanding of circle properties including:operpendicular line segments from the centre of a circle to a chord bisect the chord
-inscribed angles subtended by the same arc have the same measure
othe measure of a central angle is twice the measure of an inscribed angle subtending the same arc
otangents to a circle are perpendicular to
the radius ending at the point of tangency.

SS9.3
Demonstrate understanding of similarity of 2-D shapes. SS9.4
Demonstrate understanding of line and rotation symmetry.

SP9. 1
Demonstrate understanding of the effect
of:obias
${ }^{\circ}$ use of language
-ethics
${ }^{\circ}$ cost
${ }^{\circ}$ time and timing

- privacy
ocultural sensitivity and
${ }^{\circ}$ population or sample
on data collection. SP9.2
Demonstrate an understanding of the collection, display, and analysis of data through a project.

SP9. 3
Demonstrate an understanding of the role of probability in society.
SP9.4
Research and present how First Nations and Métis peoples, past and present, envision, represent, and make use of probability and statistics.

